Solve for x
x = \frac{\sqrt{53} + 3}{2} \approx 5.140054945
x=\frac{3-\sqrt{53}}{2}\approx -2.140054945
Graph
Share
Copied to clipboard
1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{3}+2x^{2}-x-2,1-x,x+1.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
Multiply -1 and 2 to get -2.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
Use the distributive property to multiply -2 by 1+x.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
Use the distributive property to multiply -2-2x by 2+x and combine like terms.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
To find the opposite of -4-6x-2x^{2}, find the opposite of each term.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Add 1 and 4 to get 5.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
Use the distributive property to multiply x-1 by x+2 and combine like terms.
5+6x+2x^{2}=3x^{2}+3x-6
Use the distributive property to multiply x^{2}+x-2 by 3.
5+6x+2x^{2}-3x^{2}=3x-6
Subtract 3x^{2} from both sides.
5+6x-x^{2}=3x-6
Combine 2x^{2} and -3x^{2} to get -x^{2}.
5+6x-x^{2}-3x=-6
Subtract 3x from both sides.
5+3x-x^{2}=-6
Combine 6x and -3x to get 3x.
5+3x-x^{2}+6=0
Add 6 to both sides.
11+3x-x^{2}=0
Add 5 and 6 to get 11.
-x^{2}+3x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 11}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9+44}}{2\left(-1\right)}
Multiply 4 times 11.
x=\frac{-3±\sqrt{53}}{2\left(-1\right)}
Add 9 to 44.
x=\frac{-3±\sqrt{53}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{53}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{53}}{-2} when ± is plus. Add -3 to \sqrt{53}.
x=\frac{3-\sqrt{53}}{2}
Divide -3+\sqrt{53} by -2.
x=\frac{-\sqrt{53}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{53}}{-2} when ± is minus. Subtract \sqrt{53} from -3.
x=\frac{\sqrt{53}+3}{2}
Divide -3-\sqrt{53} by -2.
x=\frac{3-\sqrt{53}}{2} x=\frac{\sqrt{53}+3}{2}
The equation is now solved.
1-\left(-\left(1+x\right)\left(2+x\right)\times 2\right)=\left(x-1\right)\left(x+2\right)\times 3
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{3}+2x^{2}-x-2,1-x,x+1.
1-\left(-2\left(1+x\right)\left(2+x\right)\right)=\left(x-1\right)\left(x+2\right)\times 3
Multiply -1 and 2 to get -2.
1-\left(-2-2x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
Use the distributive property to multiply -2 by 1+x.
1-\left(-4-6x-2x^{2}\right)=\left(x-1\right)\left(x+2\right)\times 3
Use the distributive property to multiply -2-2x by 2+x and combine like terms.
1+4+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
To find the opposite of -4-6x-2x^{2}, find the opposite of each term.
5+6x+2x^{2}=\left(x-1\right)\left(x+2\right)\times 3
Add 1 and 4 to get 5.
5+6x+2x^{2}=\left(x^{2}+x-2\right)\times 3
Use the distributive property to multiply x-1 by x+2 and combine like terms.
5+6x+2x^{2}=3x^{2}+3x-6
Use the distributive property to multiply x^{2}+x-2 by 3.
5+6x+2x^{2}-3x^{2}=3x-6
Subtract 3x^{2} from both sides.
5+6x-x^{2}=3x-6
Combine 2x^{2} and -3x^{2} to get -x^{2}.
5+6x-x^{2}-3x=-6
Subtract 3x from both sides.
5+3x-x^{2}=-6
Combine 6x and -3x to get 3x.
3x-x^{2}=-6-5
Subtract 5 from both sides.
3x-x^{2}=-11
Subtract 5 from -6 to get -11.
-x^{2}+3x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=-\frac{11}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=-\frac{11}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=-\frac{11}{-1}
Divide 3 by -1.
x^{2}-3x=11
Divide -11 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=11+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=11+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{53}{4}
Add 11 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{53}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{53}}{2} x-\frac{3}{2}=-\frac{\sqrt{53}}{2}
Simplify.
x=\frac{\sqrt{53}+3}{2} x=\frac{3-\sqrt{53}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}