\frac{ 1 }{ { \left( { R }_{ L } \right) }^{ } } = \frac{ 1 }{ 16 } + \frac{ 1 }{ 16 } + \frac{ 1 }{ 16 } + \frac{ 1 }{ 16 }
Solve for R_L
R_{L}=4
Share
Copied to clipboard
16=16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}
Variable R_{L} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 16R_{L}, the least common multiple of R_{L}^{1},16.
16=R_{L}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}
Multiply 16 and \frac{1}{16} to get 1.
16=R_{L}+R_{L}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}
Multiply 16 and \frac{1}{16} to get 1.
16=2R_{L}+16R_{L}\times \frac{1}{16}+16R_{L}\times \frac{1}{16}
Combine R_{L} and R_{L} to get 2R_{L}.
16=2R_{L}+R_{L}+16R_{L}\times \frac{1}{16}
Multiply 16 and \frac{1}{16} to get 1.
16=3R_{L}+16R_{L}\times \frac{1}{16}
Combine 2R_{L} and R_{L} to get 3R_{L}.
16=3R_{L}+R_{L}
Multiply 16 and \frac{1}{16} to get 1.
16=4R_{L}
Combine 3R_{L} and R_{L} to get 4R_{L}.
4R_{L}=16
Swap sides so that all variable terms are on the left hand side.
R_{L}=\frac{16}{4}
Divide both sides by 4.
R_{L}=4
Divide 16 by 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}