Evaluate
\frac{\sqrt{7}\left(\sqrt{14}+12\right)}{84}\approx 0.495815603
Factor
\frac{\sqrt{7} {(\sqrt{2} \sqrt{7} + 12)}}{84} = 0.49581560320698514
Share
Copied to clipboard
\frac{1}{\sqrt{7}}+\frac{1}{3\sqrt{8}}
Add 5 and 2 to get 7.
\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{1}{3\sqrt{8}}
Rationalize the denominator of \frac{1}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{7}}{7}+\frac{1}{3\sqrt{8}}
The square of \sqrt{7} is 7.
\frac{\sqrt{7}}{7}+\frac{1}{3\times 2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{7}}{7}+\frac{1}{6\sqrt{2}}
Multiply 3 and 2 to get 6.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{6\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{12}
Multiply 6 and 2 to get 12.
\frac{12\sqrt{7}}{84}+\frac{7\sqrt{2}}{84}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 12 is 84. Multiply \frac{\sqrt{7}}{7} times \frac{12}{12}. Multiply \frac{\sqrt{2}}{12} times \frac{7}{7}.
\frac{12\sqrt{7}+7\sqrt{2}}{84}
Since \frac{12\sqrt{7}}{84} and \frac{7\sqrt{2}}{84} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}