Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}+\sqrt{7}}{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-\sqrt{7}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{7}.
\frac{\sqrt{5}+\sqrt{7}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}+\sqrt{7}}{5-7}
Square \sqrt{5}. Square \sqrt{7}.
\frac{\sqrt{5}+\sqrt{7}}{-2}
Subtract 7 from 5 to get -2.
\frac{-\sqrt{5}-\sqrt{7}}{2}
Multiply both numerator and denominator by -1.