Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{1}{\sqrt{5}-\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{5}-\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{1}{\sqrt{5}-\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{1}{\sqrt{5}-\sqrt{3}}
Subtract 3 from 5 to get 2.
\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{5}+\sqrt{3}}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{5}+\sqrt{3}}{2}
Subtract 3 from 5 to get 2.
\frac{\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}}{2}
Since \frac{\sqrt{5}-\sqrt{3}}{2} and \frac{\sqrt{5}+\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{5}}{2}
Do the calculations in \sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}.
\sqrt{5}
Cancel out 2 and 2.