Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{1}{\sqrt{3}-1}
Rationalize the denominator of \frac{1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}-1}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{1}{\sqrt{3}-1}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-1}{3-1}+\frac{1}{\sqrt{3}-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{3}-1}
Subtract 1 from 3 to get 2.
\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{3-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2}
Subtract 1 from 3 to get 2.
\frac{\sqrt{3}-1+\sqrt{3}+1}{2}
Since \frac{\sqrt{3}-1}{2} and \frac{\sqrt{3}+1}{2} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{3}}{2}
Do the calculations in \sqrt{3}-1+\sqrt{3}+1.
\sqrt{3}
Cancel out 2 and 2.