Evaluate
\frac{20\sqrt{10005}}{2001}\approx 0.999750094
Share
Copied to clipboard
\frac{1}{\sqrt{1+\frac{1}{2000}}}
Reduce the fraction \frac{2}{4000} to lowest terms by extracting and canceling out 2.
\frac{1}{\sqrt{\frac{2000}{2000}+\frac{1}{2000}}}
Convert 1 to fraction \frac{2000}{2000}.
\frac{1}{\sqrt{\frac{2000+1}{2000}}}
Since \frac{2000}{2000} and \frac{1}{2000} have the same denominator, add them by adding their numerators.
\frac{1}{\sqrt{\frac{2001}{2000}}}
Add 2000 and 1 to get 2001.
\frac{1}{\frac{\sqrt{2001}}{\sqrt{2000}}}
Rewrite the square root of the division \sqrt{\frac{2001}{2000}} as the division of square roots \frac{\sqrt{2001}}{\sqrt{2000}}.
\frac{1}{\frac{\sqrt{2001}}{20\sqrt{5}}}
Factor 2000=20^{2}\times 5. Rewrite the square root of the product \sqrt{20^{2}\times 5} as the product of square roots \sqrt{20^{2}}\sqrt{5}. Take the square root of 20^{2}.
\frac{1}{\frac{\sqrt{2001}\sqrt{5}}{20\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{2001}}{20\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{1}{\frac{\sqrt{2001}\sqrt{5}}{20\times 5}}
The square of \sqrt{5} is 5.
\frac{1}{\frac{\sqrt{10005}}{20\times 5}}
To multiply \sqrt{2001} and \sqrt{5}, multiply the numbers under the square root.
\frac{1}{\frac{\sqrt{10005}}{100}}
Multiply 20 and 5 to get 100.
\frac{100}{\sqrt{10005}}
Divide 1 by \frac{\sqrt{10005}}{100} by multiplying 1 by the reciprocal of \frac{\sqrt{10005}}{100}.
\frac{100\sqrt{10005}}{\left(\sqrt{10005}\right)^{2}}
Rationalize the denominator of \frac{100}{\sqrt{10005}} by multiplying numerator and denominator by \sqrt{10005}.
\frac{100\sqrt{10005}}{10005}
The square of \sqrt{10005} is 10005.
\frac{20}{2001}\sqrt{10005}
Divide 100\sqrt{10005} by 10005 to get \frac{20}{2001}\sqrt{10005}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}