Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{\sqrt{3}}{2}-\cos(60)}-\frac{1}{\sin(60)+\cos(60)}
Get the value of \sin(60) from trigonometric values table.
\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{2}}-\frac{1}{\sin(60)+\cos(60)}
Get the value of \cos(60) from trigonometric values table.
\frac{1}{\frac{\sqrt{3}-1}{2}}-\frac{1}{\sin(60)+\cos(60)}
Since \frac{\sqrt{3}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{\sqrt{3}-1}-\frac{1}{\sin(60)+\cos(60)}
Divide 1 by \frac{\sqrt{3}-1}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{3}-1}{2}.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{1}{\sin(60)+\cos(60)}
Rationalize the denominator of \frac{2}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}-\frac{1}{\sin(60)+\cos(60)}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+1\right)}{3-1}-\frac{1}{\sin(60)+\cos(60)}
Square \sqrt{3}. Square 1.
\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{1}{\sin(60)+\cos(60)}
Subtract 1 from 3 to get 2.
\sqrt{3}+1-\frac{1}{\sin(60)+\cos(60)}
Cancel out 2 and 2.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}}{2}+\cos(60)}
Get the value of \sin(60) from trigonometric values table.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}}{2}+\frac{1}{2}}
Get the value of \cos(60) from trigonometric values table.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}+1}{2}}
Since \frac{\sqrt{3}}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\sqrt{3}+1-\frac{2}{\sqrt{3}+1}
Divide 1 by \frac{\sqrt{3}+1}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{3}+1}{2}.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\sqrt{3}+1-\left(\sqrt{3}-1\right)
Cancel out 2 and 2.
\sqrt{3}+1-\sqrt{3}+1
To find the opposite of \sqrt{3}-1, find the opposite of each term.
1+1
Combine \sqrt{3} and -\sqrt{3} to get 0.
2
Add 1 and 1 to get 2.