Evaluate
2
Share
Copied to clipboard
\frac{1}{\frac{\sqrt{3}}{2}-\cos(60)}-\frac{1}{\sin(60)+\cos(60)}
Get the value of \sin(60) from trigonometric values table.
\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{2}}-\frac{1}{\sin(60)+\cos(60)}
Get the value of \cos(60) from trigonometric values table.
\frac{1}{\frac{\sqrt{3}-1}{2}}-\frac{1}{\sin(60)+\cos(60)}
Since \frac{\sqrt{3}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{\sqrt{3}-1}-\frac{1}{\sin(60)+\cos(60)}
Divide 1 by \frac{\sqrt{3}-1}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{3}-1}{2}.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{1}{\sin(60)+\cos(60)}
Rationalize the denominator of \frac{2}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}-\frac{1}{\sin(60)+\cos(60)}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+1\right)}{3-1}-\frac{1}{\sin(60)+\cos(60)}
Square \sqrt{3}. Square 1.
\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{1}{\sin(60)+\cos(60)}
Subtract 1 from 3 to get 2.
\sqrt{3}+1-\frac{1}{\sin(60)+\cos(60)}
Cancel out 2 and 2.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}}{2}+\cos(60)}
Get the value of \sin(60) from trigonometric values table.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}}{2}+\frac{1}{2}}
Get the value of \cos(60) from trigonometric values table.
\sqrt{3}+1-\frac{1}{\frac{\sqrt{3}+1}{2}}
Since \frac{\sqrt{3}}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\sqrt{3}+1-\frac{2}{\sqrt{3}+1}
Divide 1 by \frac{\sqrt{3}+1}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{3}+1}{2}.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\sqrt{3}+1-\frac{2\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\sqrt{3}+1-\left(\sqrt{3}-1\right)
Cancel out 2 and 2.
\sqrt{3}+1-\sqrt{3}+1
To find the opposite of \sqrt{3}-1, find the opposite of each term.
1+1
Combine \sqrt{3} and -\sqrt{3} to get 0.
2
Add 1 and 1 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}