Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
1\times \frac{3}{4}-\left(\frac{1}{6}+\frac{1}{4}\right)
Divide 1 by \frac{4}{3} by multiplying 1 by the reciprocal of \frac{4}{3}.
\frac{3}{4}-\left(\frac{1}{6}+\frac{1}{4}\right)
Multiply 1 and \frac{3}{4} to get \frac{3}{4}.
\frac{3}{4}-\left(\frac{2}{12}+\frac{3}{12}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{3}{4}-\frac{2+3}{12}
Since \frac{2}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{3}{4}-\frac{5}{12}
Add 2 and 3 to get 5.
\frac{9}{12}-\frac{5}{12}
Least common multiple of 4 and 12 is 12. Convert \frac{3}{4} and \frac{5}{12} to fractions with denominator 12.
\frac{9-5}{12}
Since \frac{9}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{12}
Subtract 5 from 9 to get 4.
\frac{1}{3}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}