Evaluate
\frac{4}{15}\approx 0.266666667
Factor
\frac{2 ^ {2}}{3 \cdot 5} = 0.26666666666666666
Share
Copied to clipboard
\frac{1}{\frac{144}{11}+\frac{44}{11}+12+15+5}\times \frac{144}{11}
Convert 4 to fraction \frac{44}{11}.
\frac{1}{\frac{144+44}{11}+12+15+5}\times \frac{144}{11}
Since \frac{144}{11} and \frac{44}{11} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{188}{11}+12+15+5}\times \frac{144}{11}
Add 144 and 44 to get 188.
\frac{1}{\frac{188}{11}+\frac{132}{11}+15+5}\times \frac{144}{11}
Convert 12 to fraction \frac{132}{11}.
\frac{1}{\frac{188+132}{11}+15+5}\times \frac{144}{11}
Since \frac{188}{11} and \frac{132}{11} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{320}{11}+15+5}\times \frac{144}{11}
Add 188 and 132 to get 320.
\frac{1}{\frac{320}{11}+\frac{165}{11}+5}\times \frac{144}{11}
Convert 15 to fraction \frac{165}{11}.
\frac{1}{\frac{320+165}{11}+5}\times \frac{144}{11}
Since \frac{320}{11} and \frac{165}{11} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{485}{11}+5}\times \frac{144}{11}
Add 320 and 165 to get 485.
\frac{1}{\frac{485}{11}+\frac{55}{11}}\times \frac{144}{11}
Convert 5 to fraction \frac{55}{11}.
\frac{1}{\frac{485+55}{11}}\times \frac{144}{11}
Since \frac{485}{11} and \frac{55}{11} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{540}{11}}\times \frac{144}{11}
Add 485 and 55 to get 540.
1\times \frac{11}{540}\times \frac{144}{11}
Divide 1 by \frac{540}{11} by multiplying 1 by the reciprocal of \frac{540}{11}.
\frac{11}{540}\times \frac{144}{11}
Multiply 1 and \frac{11}{540} to get \frac{11}{540}.
\frac{11\times 144}{540\times 11}
Multiply \frac{11}{540} times \frac{144}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{144}{540}
Cancel out 11 in both numerator and denominator.
\frac{4}{15}
Reduce the fraction \frac{144}{540} to lowest terms by extracting and canceling out 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}