Evaluate
\frac{\sqrt{5}+1}{2}\approx 1.618033989
Share
Copied to clipboard
\frac{2}{1+\sqrt{5}}+1
Divide 1 by \frac{1+\sqrt{5}}{2} by multiplying 1 by the reciprocal of \frac{1+\sqrt{5}}{2}.
\frac{2\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+1
Rationalize the denominator of \frac{2}{1+\sqrt{5}} by multiplying numerator and denominator by 1-\sqrt{5}.
\frac{2\left(1-\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}+1
Consider \left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1-\sqrt{5}\right)}{1-5}+1
Square 1. Square \sqrt{5}.
\frac{2\left(1-\sqrt{5}\right)}{-4}+1
Subtract 5 from 1 to get -4.
-\frac{1}{2}\left(1-\sqrt{5}\right)+1
Divide 2\left(1-\sqrt{5}\right) by -4 to get -\frac{1}{2}\left(1-\sqrt{5}\right).
-\frac{1}{2}-\frac{1}{2}\left(-1\right)\sqrt{5}+1
Use the distributive property to multiply -\frac{1}{2} by 1-\sqrt{5}.
-\frac{1}{2}+\frac{1}{2}\sqrt{5}+1
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
-\frac{1}{2}+\frac{1}{2}\sqrt{5}+\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{-1+2}{2}+\frac{1}{2}\sqrt{5}
Since -\frac{1}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}+\frac{1}{2}\sqrt{5}
Add -1 and 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}