Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

x\times \frac{\frac{x^{2}-25}{x^{2}-9}\times \frac{x+3}{3-x}}{\frac{1}{3}\left(9-3x\right)x}
Divide 1 by \frac{1}{x} by multiplying 1 by the reciprocal of \frac{1}{x}.
x\times \frac{\frac{\left(x^{2}-25\right)\left(x+3\right)}{\left(x^{2}-9\right)\left(3-x\right)}}{\frac{1}{3}\left(9-3x\right)x}
Multiply \frac{x^{2}-25}{x^{2}-9} times \frac{x+3}{3-x} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{\frac{\left(x-5\right)\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x}
Factor the expressions that are not already factored in \frac{\left(x^{2}-25\right)\left(x+3\right)}{\left(x^{2}-9\right)\left(3-x\right)}.
x\times \frac{\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x}
Cancel out x+3 in both numerator and denominator.
x\times \frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)\times \frac{1}{3}\left(9-3x\right)x}
Express \frac{\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x} as a single fraction.
x\times \frac{x^{2}-25}{\left(x-3\right)\left(-x+3\right)\times \frac{1}{3}\left(9-3x\right)x}
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x\times \frac{x^{2}-25}{\left(-x^{2}+6x-9\right)\times \frac{1}{3}\left(9-3x\right)x}
Use the distributive property to multiply x-3 by -x+3 and combine like terms.
x\times \frac{x^{2}-25}{\left(-\frac{1}{3}x^{2}+2x-3\right)\left(9-3x\right)x}
Use the distributive property to multiply -x^{2}+6x-9 by \frac{1}{3}.
x\times \frac{x^{2}-25}{\left(-9x^{2}+x^{3}+27x-27\right)x}
Use the distributive property to multiply -\frac{1}{3}x^{2}+2x-3 by 9-3x and combine like terms.
x\times \frac{x^{2}-25}{-9x^{3}+x^{4}+27x^{2}-27x}
Use the distributive property to multiply -9x^{2}+x^{3}+27x-27 by x.
\frac{x\left(x^{2}-25\right)}{-9x^{3}+x^{4}+27x^{2}-27x}
Express x\times \frac{x^{2}-25}{-9x^{3}+x^{4}+27x^{2}-27x} as a single fraction.
\frac{x\left(x-5\right)\left(x+5\right)}{x\left(x-3\right)^{3}}
Factor the expressions that are not already factored.
\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)^{3}}
Cancel out x in both numerator and denominator.
\frac{x^{2}-25}{x^{3}-9x^{2}+27x-27}
Expand the expression.
x\times \frac{\frac{x^{2}-25}{x^{2}-9}\times \frac{x+3}{3-x}}{\frac{1}{3}\left(9-3x\right)x}
Divide 1 by \frac{1}{x} by multiplying 1 by the reciprocal of \frac{1}{x}.
x\times \frac{\frac{\left(x^{2}-25\right)\left(x+3\right)}{\left(x^{2}-9\right)\left(3-x\right)}}{\frac{1}{3}\left(9-3x\right)x}
Multiply \frac{x^{2}-25}{x^{2}-9} times \frac{x+3}{3-x} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{\frac{\left(x-5\right)\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x}
Factor the expressions that are not already factored in \frac{\left(x^{2}-25\right)\left(x+3\right)}{\left(x^{2}-9\right)\left(3-x\right)}.
x\times \frac{\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x}
Cancel out x+3 in both numerator and denominator.
x\times \frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)\times \frac{1}{3}\left(9-3x\right)x}
Express \frac{\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)\left(-x+3\right)}}{\frac{1}{3}\left(9-3x\right)x} as a single fraction.
x\times \frac{x^{2}-25}{\left(x-3\right)\left(-x+3\right)\times \frac{1}{3}\left(9-3x\right)x}
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x\times \frac{x^{2}-25}{\left(-x^{2}+6x-9\right)\times \frac{1}{3}\left(9-3x\right)x}
Use the distributive property to multiply x-3 by -x+3 and combine like terms.
x\times \frac{x^{2}-25}{\left(-\frac{1}{3}x^{2}+2x-3\right)\left(9-3x\right)x}
Use the distributive property to multiply -x^{2}+6x-9 by \frac{1}{3}.
x\times \frac{x^{2}-25}{\left(-9x^{2}+x^{3}+27x-27\right)x}
Use the distributive property to multiply -\frac{1}{3}x^{2}+2x-3 by 9-3x and combine like terms.
x\times \frac{x^{2}-25}{-9x^{3}+x^{4}+27x^{2}-27x}
Use the distributive property to multiply -9x^{2}+x^{3}+27x-27 by x.
\frac{x\left(x^{2}-25\right)}{-9x^{3}+x^{4}+27x^{2}-27x}
Express x\times \frac{x^{2}-25}{-9x^{3}+x^{4}+27x^{2}-27x} as a single fraction.
\frac{x\left(x-5\right)\left(x+5\right)}{x\left(x-3\right)^{3}}
Factor the expressions that are not already factored.
\frac{\left(x-5\right)\left(x+5\right)}{\left(x-3\right)^{3}}
Cancel out x in both numerator and denominator.
\frac{x^{2}-25}{x^{3}-9x^{2}+27x-27}
Expand the expression.