Evaluate
\frac{168}{5}=33.6
Factor
\frac{2 ^ {3} \cdot 3 \cdot 7}{5} = 33\frac{3}{5} = 33.6
Share
Copied to clipboard
\frac{1}{\frac{8}{504}+\frac{7}{504}}
Least common multiple of 63 and 72 is 504. Convert \frac{1}{63} and \frac{1}{72} to fractions with denominator 504.
\frac{1}{\frac{8+7}{504}}
Since \frac{8}{504} and \frac{7}{504} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{15}{504}}
Add 8 and 7 to get 15.
\frac{1}{\frac{5}{168}}
Reduce the fraction \frac{15}{504} to lowest terms by extracting and canceling out 3.
1\times \frac{168}{5}
Divide 1 by \frac{5}{168} by multiplying 1 by the reciprocal of \frac{5}{168}.
\frac{168}{5}
Multiply 1 and \frac{168}{5} to get \frac{168}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}