Evaluate
\frac{20}{3}\approx 6.666666667
Factor
\frac{5 \cdot 2 ^ {2}}{3} = 6\frac{2}{3} = 6.666666666666667
Share
Copied to clipboard
\frac{1}{\frac{1}{24}+\frac{25}{3000}+\frac{1}{10}}
Expand \frac{0.25}{30} by multiplying both numerator and the denominator by 100.
\frac{1}{\frac{1}{24}+\frac{1}{120}+\frac{1}{10}}
Reduce the fraction \frac{25}{3000} to lowest terms by extracting and canceling out 25.
\frac{1}{\frac{5}{120}+\frac{1}{120}+\frac{1}{10}}
Least common multiple of 24 and 120 is 120. Convert \frac{1}{24} and \frac{1}{120} to fractions with denominator 120.
\frac{1}{\frac{5+1}{120}+\frac{1}{10}}
Since \frac{5}{120} and \frac{1}{120} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{6}{120}+\frac{1}{10}}
Add 5 and 1 to get 6.
\frac{1}{\frac{1}{20}+\frac{1}{10}}
Reduce the fraction \frac{6}{120} to lowest terms by extracting and canceling out 6.
\frac{1}{\frac{1}{20}+\frac{2}{20}}
Least common multiple of 20 and 10 is 20. Convert \frac{1}{20} and \frac{1}{10} to fractions with denominator 20.
\frac{1}{\frac{1+2}{20}}
Since \frac{1}{20} and \frac{2}{20} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{3}{20}}
Add 1 and 2 to get 3.
1\times \frac{20}{3}
Divide 1 by \frac{3}{20} by multiplying 1 by the reciprocal of \frac{3}{20}.
\frac{20}{3}
Multiply 1 and \frac{20}{3} to get \frac{20}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}