Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{-\frac{1}{2}-\frac{\sqrt{3}}{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{1}{\frac{-1-\sqrt{3}}{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Since -\frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{-1-\sqrt{3}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Divide 1 by \frac{-1-\sqrt{3}}{2} by multiplying 1 by the reciprocal of \frac{-1-\sqrt{3}}{2}.
\frac{2\left(-1+\sqrt{3}\right)}{\left(-1-\sqrt{3}\right)\left(-1+\sqrt{3}\right)}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Rationalize the denominator of \frac{2}{-1-\sqrt{3}} by multiplying numerator and denominator by -1+\sqrt{3}.
\frac{2\left(-1+\sqrt{3}\right)}{\left(-1\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Consider \left(-1-\sqrt{3}\right)\left(-1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(-1+\sqrt{3}\right)}{1-3}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Square -1. Square \sqrt{3}.
\frac{2\left(-1+\sqrt{3}\right)}{-2}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Subtract 3 from 1 to get -2.
-\left(-1+\sqrt{3}\right)+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Cancel out -2 and -2.
-\left(-1+\sqrt{3}\right)+\frac{1}{-\frac{1}{2}+\frac{\sqrt{3}}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
-\left(-1+\sqrt{3}\right)+\frac{1}{\frac{-1+\sqrt{3}}{2}}
Since -\frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
-\left(-1+\sqrt{3}\right)+\frac{2}{-1+\sqrt{3}}
Divide 1 by \frac{-1+\sqrt{3}}{2} by multiplying 1 by the reciprocal of \frac{-1+\sqrt{3}}{2}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{\left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{-1+\sqrt{3}} by multiplying numerator and denominator by -1-\sqrt{3}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{\left(-1\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{1-3}
Square -1. Square \sqrt{3}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
-\left(-1+\sqrt{3}\right)-\left(-1-\sqrt{3}\right)
Cancel out -2 and -2.
-\left(-1\right)-\sqrt{3}-\left(-1-\sqrt{3}\right)
To find the opposite of -1+\sqrt{3}, find the opposite of each term.
1-\sqrt{3}-\left(-1-\sqrt{3}\right)
The opposite of -1 is 1.
1-\sqrt{3}-\left(-1\right)-\left(-\sqrt{3}\right)
To find the opposite of -1-\sqrt{3}, find the opposite of each term.
1-\sqrt{3}+1-\left(-\sqrt{3}\right)
The opposite of -1 is 1.
1-\sqrt{3}+1+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
2-\sqrt{3}+\sqrt{3}
Add 1 and 1 to get 2.
2
Combine -\sqrt{3} and \sqrt{3} to get 0.