Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{1}{-\frac{1}{2}-\frac{\sqrt{3}}{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{1}{\frac{-1-\sqrt{3}}{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Since -\frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{-1-\sqrt{3}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Divide 1 by \frac{-1-\sqrt{3}}{2} by multiplying 1 by the reciprocal of \frac{-1-\sqrt{3}}{2}.
\frac{2\left(-1+\sqrt{3}\right)}{\left(-1-\sqrt{3}\right)\left(-1+\sqrt{3}\right)}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Rationalize the denominator of \frac{2}{-1-\sqrt{3}} by multiplying numerator and denominator by -1+\sqrt{3}.
\frac{2\left(-1+\sqrt{3}\right)}{\left(-1\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Consider \left(-1-\sqrt{3}\right)\left(-1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(-1+\sqrt{3}\right)}{1-3}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Square -1. Square \sqrt{3}.
\frac{2\left(-1+\sqrt{3}\right)}{-2}+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Subtract 3 from 1 to get -2.
-\left(-1+\sqrt{3}\right)+\frac{1}{\frac{-1}{2}+\frac{\sqrt{3}}{2}}
Cancel out -2 and -2.
-\left(-1+\sqrt{3}\right)+\frac{1}{-\frac{1}{2}+\frac{\sqrt{3}}{2}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
-\left(-1+\sqrt{3}\right)+\frac{1}{\frac{-1+\sqrt{3}}{2}}
Since -\frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
-\left(-1+\sqrt{3}\right)+\frac{2}{-1+\sqrt{3}}
Divide 1 by \frac{-1+\sqrt{3}}{2} by multiplying 1 by the reciprocal of \frac{-1+\sqrt{3}}{2}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{\left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{-1+\sqrt{3}} by multiplying numerator and denominator by -1-\sqrt{3}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{\left(-1\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{1-3}
Square -1. Square \sqrt{3}.
-\left(-1+\sqrt{3}\right)+\frac{2\left(-1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
-\left(-1+\sqrt{3}\right)-\left(-1-\sqrt{3}\right)
Cancel out -2 and -2.
-\left(-1\right)-\sqrt{3}-\left(-1-\sqrt{3}\right)
To find the opposite of -1+\sqrt{3}, find the opposite of each term.
1-\sqrt{3}-\left(-1-\sqrt{3}\right)
The opposite of -1 is 1.
1-\sqrt{3}-\left(-1\right)-\left(-\sqrt{3}\right)
To find the opposite of -1-\sqrt{3}, find the opposite of each term.
1-\sqrt{3}+1-\left(-\sqrt{3}\right)
The opposite of -1 is 1.
1-\sqrt{3}+1+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
2-\sqrt{3}+\sqrt{3}
Add 1 and 1 to get 2.
2
Combine -\sqrt{3} and \sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}