Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{\sqrt{13}+3}{2}}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Since \frac{\sqrt{13}}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{2}{\sqrt{13}+3}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Divide 1 by \frac{\sqrt{13}+3}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{13}+3}{2}.
\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right)}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Rationalize the denominator of \frac{2}{\sqrt{13}+3} by multiplying numerator and denominator by \sqrt{13}-3.
\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}\right)^{2}-3^{2}}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Consider \left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{13}-3\right)}{13-9}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Square \sqrt{13}. Square 3.
\frac{2\left(\sqrt{13}-3\right)}{4}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Subtract 9 from 13 to get 4.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Divide 2\left(\sqrt{13}-3\right) by 4 to get \frac{1}{2}\left(\sqrt{13}-3\right).
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{\frac{\sqrt{13}+3}{2}}
Since \frac{\sqrt{13}}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2}{\sqrt{13}+3}
Divide 1 by \frac{\sqrt{13}+3}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{13}+3}{2}.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right)}
Rationalize the denominator of \frac{2}{\sqrt{13}+3} by multiplying numerator and denominator by \sqrt{13}-3.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}\right)^{2}-3^{2}}
Consider \left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{13-9}
Square \sqrt{13}. Square 3.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{4}
Subtract 9 from 13 to get 4.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{2}\left(\sqrt{13}-3\right)
Divide 2\left(\sqrt{13}-3\right) by 4 to get \frac{1}{2}\left(\sqrt{13}-3\right).
\sqrt{13}-3
Combine \frac{1}{2}\left(\sqrt{13}-3\right) and \frac{1}{2}\left(\sqrt{13}-3\right) to get \sqrt{13}-3.