Evaluate
-3
Factor
-3
Share
Copied to clipboard
\frac{1}{\frac{\sqrt{13}+3}{2}}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Since \frac{\sqrt{13}}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{2}{\sqrt{13}+3}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Divide 1 by \frac{\sqrt{13}+3}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{13}+3}{2}.
\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right)}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Rationalize the denominator of \frac{2}{\sqrt{13}+3} by multiplying numerator and denominator by \sqrt{13}-3.
\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}\right)^{2}-3^{2}}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Consider \left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{13}-3\right)}{13-9}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Square \sqrt{13}. Square 3.
\frac{2\left(\sqrt{13}-3\right)}{4}+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Subtract 9 from 13 to get 4.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{-\frac{\sqrt{13}}{2}+\frac{3}{2}}
Divide 2\left(\sqrt{13}-3\right) by 4 to get \frac{1}{2}\left(\sqrt{13}-3\right).
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{\frac{\sqrt{13}+3}{2}}
Since \frac{\sqrt{13}}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2}{\sqrt{13}+3}
Divide 1 by \frac{\sqrt{13}+3}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{13}+3}{2}.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right)}
Rationalize the denominator of \frac{2}{\sqrt{13}+3} by multiplying numerator and denominator by \sqrt{13}-3.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{\left(\sqrt{13}\right)^{2}-3^{2}}
Consider \left(\sqrt{13}+3\right)\left(\sqrt{13}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{13-9}
Square \sqrt{13}. Square 3.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{2\left(\sqrt{13}-3\right)}{4}
Subtract 9 from 13 to get 4.
\frac{1}{2}\left(\sqrt{13}-3\right)+\frac{1}{2}\left(\sqrt{13}-3\right)
Divide 2\left(\sqrt{13}-3\right) by 4 to get \frac{1}{2}\left(\sqrt{13}-3\right).
\sqrt{13}-3
Combine \frac{1}{2}\left(\sqrt{13}-3\right) and \frac{1}{2}\left(\sqrt{13}-3\right) to get \sqrt{13}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}