Evaluate
\frac{3\left(\sqrt{252544369}+17787\right)}{550000}\approx 0.183701698
Share
Copied to clipboard
\frac{3.388\times 10^{6}\times 0.126+\sqrt{\left(0.77^{2}-0.3\right)\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 0.77 and 4.4 to get 3.388.
\frac{3.388\times 1000000\times 0.126+\sqrt{\left(0.77^{2}-0.3\right)\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 10 to the power of 6 and get 1000000.
\frac{3388000\times 0.126+\sqrt{\left(0.77^{2}-0.3\right)\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 3.388 and 1000000 to get 3388000.
\frac{426888+\sqrt{\left(0.77^{2}-0.3\right)\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 3388000 and 0.126 to get 426888.
\frac{426888+\sqrt{\left(0.5929-0.3\right)\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 0.77 to the power of 2 and get 0.5929.
\frac{426888+\sqrt{0.2929\times 4.4^{2}\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Subtract 0.3 from 0.5929 to get 0.2929.
\frac{426888+\sqrt{0.2929\times 19.36\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 4.4 to the power of 2 and get 19.36.
\frac{426888+\sqrt{5.670544\times 10^{12}\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 0.2929 and 19.36 to get 5.670544.
\frac{426888+\sqrt{5.670544\times 1000000000000\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 10 to the power of 12 and get 1000000000000.
\frac{426888+\sqrt{5670544000000\times 0.126^{2}+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 5.670544 and 1000000000000 to get 5670544000000.
\frac{426888+\sqrt{5670544000000\times 0.015876+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 0.126 to the power of 2 and get 0.015876.
\frac{426888+\sqrt{90025556544+4\times 4.4\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 5670544000000 and 0.015876 to get 90025556544.
\frac{426888+\sqrt{90025556544+17.6\times 10^{6}\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 4 and 4.4 to get 17.6.
\frac{426888+\sqrt{90025556544+17.6\times 1000000\times 25000\times 0.126}}{4.4\times 10^{6}}
Calculate 10 to the power of 6 and get 1000000.
\frac{426888+\sqrt{90025556544+17600000\times 25000\times 0.126}}{4.4\times 10^{6}}
Multiply 17.6 and 1000000 to get 17600000.
\frac{426888+\sqrt{90025556544+440000000000\times 0.126}}{4.4\times 10^{6}}
Multiply 17600000 and 25000 to get 440000000000.
\frac{426888+\sqrt{90025556544+55440000000}}{4.4\times 10^{6}}
Multiply 440000000000 and 0.126 to get 55440000000.
\frac{426888+\sqrt{145465556544}}{4.4\times 10^{6}}
Add 90025556544 and 55440000000 to get 145465556544.
\frac{426888+24\sqrt{252544369}}{4.4\times 10^{6}}
Factor 145465556544=24^{2}\times 252544369. Rewrite the square root of the product \sqrt{24^{2}\times 252544369} as the product of square roots \sqrt{24^{2}}\sqrt{252544369}. Take the square root of 24^{2}.
\frac{426888+24\sqrt{252544369}}{4.4\times 1000000}
Calculate 10 to the power of 6 and get 1000000.
\frac{426888+24\sqrt{252544369}}{4400000}
Multiply 4.4 and 1000000 to get 4400000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}