Evaluate
7
Factor
7
Share
Copied to clipboard
\frac{0.4\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{-\frac{1}{5}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiply 0.4 and -\frac{1}{2} to get -\frac{1}{5}.
\frac{-\frac{1}{5}+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculate \frac{5}{6} to the power of -2 and get \frac{36}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Add -\frac{1}{5} and \frac{36}{25} to get \frac{31}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{\frac{31}{25}}{\left(1\times 2\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{\frac{31}{25}}{2^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiply 1 and 2 to get 2.
\frac{\frac{31}{25}}{\frac{1}{2}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{31}{25}\times 2+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Divide \frac{31}{25} by \frac{1}{2} by multiplying \frac{31}{25} by the reciprocal of \frac{1}{2}.
\frac{62}{25}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiply \frac{31}{25} and 2 to get \frac{62}{25}.
\frac{62}{25}+\frac{1.134\times 10^{1}}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{62}{25}+\frac{1.134\times 10}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculate 10 to the power of 1 and get 10.
\frac{62}{25}+\frac{11.34}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiply 1.134 and 10 to get 11.34.
\frac{62}{25}+\frac{1134}{567}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Expand \frac{11.34}{5.67} by multiplying both numerator and the denominator by 100.
\frac{62}{25}+2\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Divide 1134 by 567 to get 2.
\frac{62}{25}+2\times 0.01-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculate -0.1 to the power of 2 and get 0.01.
\frac{62}{25}+0.02-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiply 2 and 0.01 to get 0.02.
\frac{5}{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Add \frac{62}{25} and 0.02 to get \frac{5}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Subtract 2 from -\frac{1}{4} to get -\frac{9}{4}.
\frac{5}{2}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Divide \frac{1}{2} by -\frac{9}{4} by multiplying \frac{1}{2} by the reciprocal of -\frac{9}{4}.
\frac{5}{2}-\left(-\frac{2}{9}\right)^{-1}
Multiply \frac{1}{2} and -\frac{4}{9} to get -\frac{2}{9}.
\frac{5}{2}-\left(-\frac{9}{2}\right)
Calculate -\frac{2}{9} to the power of -1 and get -\frac{9}{2}.
\frac{5}{2}+\frac{9}{2}
The opposite of -\frac{9}{2} is \frac{9}{2}.
7
Add \frac{5}{2} and \frac{9}{2} to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}