Solve for x
x=0.3
Graph
Share
Copied to clipboard
2\times \frac{0.02x}{0.03}+2=2\times \frac{0\times 18x+0.18}{0.12}-\left(1.5-3x\right)
Multiply both sides of the equation by 2.
2\times \frac{2}{3}x+2=2\times \frac{0\times 18x+0.18}{0.12}-\left(1.5-3x\right)
Divide 0.02x by 0.03 to get \frac{2}{3}x.
\frac{4}{3}x+2=2\times \frac{0\times 18x+0.18}{0.12}-\left(1.5-3x\right)
Multiply 2 and \frac{2}{3} to get \frac{4}{3}.
\frac{4}{3}x+2=2\times \frac{0x+0.18}{0.12}-\left(1.5-3x\right)
Multiply 0 and 18 to get 0.
\frac{4}{3}x+2=2\times \frac{0+0.18}{0.12}-\left(1.5-3x\right)
Anything times zero gives zero.
\frac{4}{3}x+2=2\times \frac{0.18}{0.12}-\left(1.5-3x\right)
Add 0 and 0.18 to get 0.18.
\frac{4}{3}x+2=2\times \frac{18}{12}-\left(1.5-3x\right)
Expand \frac{0.18}{0.12} by multiplying both numerator and the denominator by 100.
\frac{4}{3}x+2=2\times \frac{3}{2}-\left(1.5-3x\right)
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
\frac{4}{3}x+2=3-\left(1.5-3x\right)
Cancel out 2 and 2.
\frac{4}{3}x+2=3-1.5-\left(-3x\right)
To find the opposite of 1.5-3x, find the opposite of each term.
\frac{4}{3}x+2=3-1.5+3x
The opposite of -3x is 3x.
\frac{4}{3}x+2=1.5+3x
Subtract 1.5 from 3 to get 1.5.
\frac{4}{3}x+2-3x=1.5
Subtract 3x from both sides.
-\frac{5}{3}x+2=1.5
Combine \frac{4}{3}x and -3x to get -\frac{5}{3}x.
-\frac{5}{3}x=1.5-2
Subtract 2 from both sides.
-\frac{5}{3}x=-0.5
Subtract 2 from 1.5 to get -0.5.
x=\frac{-0.5}{-\frac{5}{3}}
Divide both sides by -\frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}