Verify
false
Share
Copied to clipboard
\frac{78000}{13}<\frac{78}{0.13}\text{ and }\frac{78}{0.13}<\frac{7.8}{13}
Expand \frac{0.0078}{0.0000013} by multiplying both numerator and the denominator by 10000000.
6000<\frac{78}{0.13}\text{ and }\frac{78}{0.13}<\frac{7.8}{13}
Divide 78000 by 13 to get 6000.
6000<\frac{7800}{13}\text{ and }\frac{78}{0.13}<\frac{7.8}{13}
Expand \frac{78}{0.13} by multiplying both numerator and the denominator by 100.
6000<600\text{ and }\frac{78}{0.13}<\frac{7.8}{13}
Divide 7800 by 13 to get 600.
\text{false}\text{ and }\frac{78}{0.13}<\frac{7.8}{13}
Compare 6000 and 600.
\text{false}\text{ and }\frac{7800}{13}<\frac{7.8}{13}
Expand \frac{78}{0.13} by multiplying both numerator and the denominator by 100.
\text{false}\text{ and }600<\frac{7.8}{13}
Divide 7800 by 13 to get 600.
\text{false}\text{ and }600<\frac{78}{130}
Expand \frac{7.8}{13} by multiplying both numerator and the denominator by 10.
\text{false}\text{ and }600<\frac{3}{5}
Reduce the fraction \frac{78}{130} to lowest terms by extracting and canceling out 26.
\text{false}\text{ and }\frac{3000}{5}<\frac{3}{5}
Convert 600 to fraction \frac{3000}{5}.
\text{false}\text{ and }\text{false}
Compare \frac{3000}{5} and \frac{3}{5}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}