Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{0x\left(x^{2}+6\right)}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0\times 1x\sqrt{x^{2}+4}}{\left(1+\left(\frac{2}{x}\right)^{2}\right)^{2}}
Multiply 0 and 2 to get 0.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0\times 1x\sqrt{x^{2}+4}}{\left(1+\left(\frac{2}{x}\right)^{2}\right)^{2}}
Anything times zero gives zero.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\left(1+\left(\frac{2}{x}\right)^{2}\right)^{2}}
Multiply 0 and 1 to get 0.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\left(1+\frac{2^{2}}{x^{2}}\right)^{2}}
To raise \frac{2}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\left(\frac{x^{2}}{x^{2}}+\frac{2^{2}}{x^{2}}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\left(\frac{x^{2}+2^{2}}{x^{2}}\right)^{2}}
Since \frac{x^{2}}{x^{2}} and \frac{2^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\left(\frac{x^{2}+4}{x^{2}}\right)^{2}}
Combine like terms in x^{2}+2^{2}.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\frac{\left(x^{2}+4\right)^{2}}{\left(x^{2}\right)^{2}}}
To raise \frac{x^{2}+4}{x^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}}{\frac{\left(x^{2}+4\right)^{2}}{x^{4}}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x\sqrt{x^{2}+4}x^{4}}{\left(x^{2}+4\right)^{2}}
Divide 0x\sqrt{x^{2}+4} by \frac{\left(x^{2}+4\right)^{2}}{x^{4}} by multiplying 0x\sqrt{x^{2}+4} by the reciprocal of \frac{\left(x^{2}+4\right)^{2}}{x^{4}}.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0x^{5}\sqrt{x^{2}+4}}{\left(x^{2}+4\right)^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0}{\left(x^{2}+4\right)^{2}}
Factor the expressions that are not already factored in \frac{0x^{5}\sqrt{x^{2}+4}}{\left(x^{2}+4\right)^{2}}.
\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}-\frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}}
Cancel out \sqrt{x^{2}+4} in both numerator and denominator.
0
Subtract \frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}} from \frac{0}{\left(x^{2}+4\right)^{\frac{3}{2}}} to get 0.