Solve for x
x=2y-9
Solve for y
y=\frac{x+9}{2}
Graph
Share
Copied to clipboard
-2\left(-y+6\right)=x-3
Multiply both sides of the equation by -2.
-2\left(-y\right)-12=x-3
Use the distributive property to multiply -2 by -y+6.
2y-12=x-3
Multiply -2 and -1 to get 2.
x-3=2y-12
Swap sides so that all variable terms are on the left hand side.
x=2y-12+3
Add 3 to both sides.
x=2y-9
Add -12 and 3 to get -9.
-2\left(-y+6\right)=x-3
Multiply both sides of the equation by -2.
-2\left(-y\right)-12=x-3
Use the distributive property to multiply -2 by -y+6.
2y-12=x-3
Multiply -2 and -1 to get 2.
2y=x-3+12
Add 12 to both sides.
2y=x+9
Add -3 and 12 to get 9.
\frac{2y}{2}=\frac{x+9}{2}
Divide both sides by 2.
y=\frac{x+9}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}