Solve for x
x=y-6
y\neq 1
Solve for y
y=x+6
x\neq -5
Graph
Share
Copied to clipboard
-x-5=-\left(y-1\right)
Multiply both sides of the equation by y-1.
-x-5=-y+1
To find the opposite of y-1, find the opposite of each term.
-x=-y+1+5
Add 5 to both sides.
-x=-y+6
Add 1 and 5 to get 6.
-x=6-y
The equation is in standard form.
\frac{-x}{-1}=\frac{6-y}{-1}
Divide both sides by -1.
x=\frac{6-y}{-1}
Dividing by -1 undoes the multiplication by -1.
x=y-6
Divide -y+6 by -1.
-x-5=-\left(y-1\right)
Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by y-1.
-x-5=-y+1
To find the opposite of y-1, find the opposite of each term.
-y+1=-x-5
Swap sides so that all variable terms are on the left hand side.
-y=-x-5-1
Subtract 1 from both sides.
-y=-x-6
Subtract 1 from -5 to get -6.
\frac{-y}{-1}=\frac{-x-6}{-1}
Divide both sides by -1.
y=\frac{-x-6}{-1}
Dividing by -1 undoes the multiplication by -1.
y=x+6
Divide -x-6 by -1.
y=x+6\text{, }y\neq 1
Variable y cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}