Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-7-\frac{\sqrt{143}}{\sqrt{3}}}{10}
Rewrite the square root of the division \sqrt{\frac{143}{3}} as the division of square roots \frac{\sqrt{143}}{\sqrt{3}}.
\frac{-7-\frac{\sqrt{143}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{10}
Rationalize the denominator of \frac{\sqrt{143}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-7-\frac{\sqrt{143}\sqrt{3}}{3}}{10}
The square of \sqrt{3} is 3.
\frac{-7-\frac{\sqrt{429}}{3}}{10}
To multiply \sqrt{143} and \sqrt{3}, multiply the numbers under the square root.
\frac{-\frac{7\times 3}{3}-\frac{\sqrt{429}}{3}}{10}
To add or subtract expressions, expand them to make their denominators the same. Multiply -7 times \frac{3}{3}.
\frac{\frac{-7\times 3-\sqrt{429}}{3}}{10}
Since -\frac{7\times 3}{3} and \frac{\sqrt{429}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-21-\sqrt{429}}{3}}{10}
Do the multiplications in -7\times 3-\sqrt{429}.
\frac{-21-\sqrt{429}}{3\times 10}
Express \frac{\frac{-21-\sqrt{429}}{3}}{10} as a single fraction.
\frac{-21-\sqrt{429}}{30}
Multiply 3 and 10 to get 30.