Evaluate
-\frac{\sqrt{429}}{30}-\frac{7}{10}\approx -1.390410506
Share
Copied to clipboard
\frac{-7-\frac{\sqrt{143}}{\sqrt{3}}}{10}
Rewrite the square root of the division \sqrt{\frac{143}{3}} as the division of square roots \frac{\sqrt{143}}{\sqrt{3}}.
\frac{-7-\frac{\sqrt{143}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{10}
Rationalize the denominator of \frac{\sqrt{143}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-7-\frac{\sqrt{143}\sqrt{3}}{3}}{10}
The square of \sqrt{3} is 3.
\frac{-7-\frac{\sqrt{429}}{3}}{10}
To multiply \sqrt{143} and \sqrt{3}, multiply the numbers under the square root.
\frac{-\frac{7\times 3}{3}-\frac{\sqrt{429}}{3}}{10}
To add or subtract expressions, expand them to make their denominators the same. Multiply -7 times \frac{3}{3}.
\frac{\frac{-7\times 3-\sqrt{429}}{3}}{10}
Since -\frac{7\times 3}{3} and \frac{\sqrt{429}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-21-\sqrt{429}}{3}}{10}
Do the multiplications in -7\times 3-\sqrt{429}.
\frac{-21-\sqrt{429}}{3\times 10}
Express \frac{\frac{-21-\sqrt{429}}{3}}{10} as a single fraction.
\frac{-21-\sqrt{429}}{30}
Multiply 3 and 10 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}