Evaluate
-\frac{2a\left(10a+1\right)}{5}
Expand
-4a^{2}-\frac{2a}{5}
Share
Copied to clipboard
\frac{-4a^{2}}{10a}-4a^{2}
Combine -7a^{2} and 3a^{2} to get -4a^{2}.
\frac{-2a}{5}-4a^{2}
Cancel out 2a in both numerator and denominator.
\frac{-2a}{5}+\frac{5\left(-4\right)a^{2}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4a^{2} times \frac{5}{5}.
\frac{-2a+5\left(-4\right)a^{2}}{5}
Since \frac{-2a}{5} and \frac{5\left(-4\right)a^{2}}{5} have the same denominator, add them by adding their numerators.
\frac{-2a-20a^{2}}{5}
Do the multiplications in -2a+5\left(-4\right)a^{2}.
\frac{-4a^{2}}{10a}-4a^{2}
Combine -7a^{2} and 3a^{2} to get -4a^{2}.
\frac{-2a}{5}-4a^{2}
Cancel out 2a in both numerator and denominator.
\frac{-2a}{5}+\frac{5\left(-4\right)a^{2}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4a^{2} times \frac{5}{5}.
\frac{-2a+5\left(-4\right)a^{2}}{5}
Since \frac{-2a}{5} and \frac{5\left(-4\right)a^{2}}{5} have the same denominator, add them by adding their numerators.
\frac{-2a-20a^{2}}{5}
Do the multiplications in -2a+5\left(-4\right)a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}