Evaluate (complex solution)
-\frac{\sqrt{51}i}{2}-3\approx -3-3.570714214i
Evaluate
\text{Indeterminate}
Real Part (complex solution)
-3
Share
Copied to clipboard
\frac{-6-\sqrt{-36-4-6-5}}{2}
Calculate 6 to the power of 2 and get 36.
\frac{-6-\sqrt{-40-6-5}}{2}
Subtract 4 from -36 to get -40.
\frac{-6-\sqrt{-46-5}}{2}
Subtract 6 from -40 to get -46.
\frac{-6-\sqrt{-51}}{2}
Subtract 5 from -46 to get -51.
\frac{-6-\sqrt{51}i}{2}
Factor -51=51\left(-1\right). Rewrite the square root of the product \sqrt{51\left(-1\right)} as the product of square roots \sqrt{51}\sqrt{-1}. By definition, the square root of -1 is i.
\frac{-6-i\sqrt{51}}{2}
Multiply -1 and i to get -i.
\frac{-6-\sqrt{-36-4-6-5}}{2}
Calculate 6 to the power of 2 and get 36.
\frac{-6-\sqrt{-40-6-5}}{2}
Subtract 4 from -36 to get -40.
\frac{-6-\sqrt{-46-5}}{2}
Subtract 6 from -40 to get -46.
\frac{-6-\sqrt{-51}}{2}
Subtract 5 from -46 to get -51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}