Evaluate
\frac{41}{9}\approx 4.555555556
Factor
\frac{41}{3 ^ {2}} = 4\frac{5}{9} = 4.555555555555555
Share
Copied to clipboard
\frac{-4+\frac{7\times 7}{2}}{1+\frac{7}{2}}
Express \frac{7}{2}\times 7 as a single fraction.
\frac{-4+\frac{49}{2}}{1+\frac{7}{2}}
Multiply 7 and 7 to get 49.
\frac{-\frac{8}{2}+\frac{49}{2}}{1+\frac{7}{2}}
Convert -4 to fraction -\frac{8}{2}.
\frac{\frac{-8+49}{2}}{1+\frac{7}{2}}
Since -\frac{8}{2} and \frac{49}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{2}}{1+\frac{7}{2}}
Add -8 and 49 to get 41.
\frac{\frac{41}{2}}{\frac{2}{2}+\frac{7}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{41}{2}}{\frac{2+7}{2}}
Since \frac{2}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{2}}{\frac{9}{2}}
Add 2 and 7 to get 9.
\frac{41}{2}\times \frac{2}{9}
Divide \frac{41}{2} by \frac{9}{2} by multiplying \frac{41}{2} by the reciprocal of \frac{9}{2}.
\frac{41\times 2}{2\times 9}
Multiply \frac{41}{2} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{41}{9}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}