Solve for x
x = \frac{275 \sqrt{633} + 3025}{64} \approx 155.372813968
x=\frac{3025-275\sqrt{633}}{64}\approx -60.841563968
Graph
Share
Copied to clipboard
\frac{-32x^{2}}{3025}+x+200=100
Calculate 55 to the power of 2 and get 3025.
\frac{-32x^{2}}{3025}+x+200-100=0
Subtract 100 from both sides.
\frac{-32x^{2}}{3025}+x+100=0
Subtract 100 from 200 to get 100.
-32x^{2}+3025x+302500=0
Multiply both sides of the equation by 3025.
x=\frac{-3025±\sqrt{3025^{2}-4\left(-32\right)\times 302500}}{2\left(-32\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32 for a, 3025 for b, and 302500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3025±\sqrt{9150625-4\left(-32\right)\times 302500}}{2\left(-32\right)}
Square 3025.
x=\frac{-3025±\sqrt{9150625+128\times 302500}}{2\left(-32\right)}
Multiply -4 times -32.
x=\frac{-3025±\sqrt{9150625+38720000}}{2\left(-32\right)}
Multiply 128 times 302500.
x=\frac{-3025±\sqrt{47870625}}{2\left(-32\right)}
Add 9150625 to 38720000.
x=\frac{-3025±275\sqrt{633}}{2\left(-32\right)}
Take the square root of 47870625.
x=\frac{-3025±275\sqrt{633}}{-64}
Multiply 2 times -32.
x=\frac{275\sqrt{633}-3025}{-64}
Now solve the equation x=\frac{-3025±275\sqrt{633}}{-64} when ± is plus. Add -3025 to 275\sqrt{633}.
x=\frac{3025-275\sqrt{633}}{64}
Divide -3025+275\sqrt{633} by -64.
x=\frac{-275\sqrt{633}-3025}{-64}
Now solve the equation x=\frac{-3025±275\sqrt{633}}{-64} when ± is minus. Subtract 275\sqrt{633} from -3025.
x=\frac{275\sqrt{633}+3025}{64}
Divide -3025-275\sqrt{633} by -64.
x=\frac{3025-275\sqrt{633}}{64} x=\frac{275\sqrt{633}+3025}{64}
The equation is now solved.
\frac{-32x^{2}}{3025}+x+200=100
Calculate 55 to the power of 2 and get 3025.
\frac{-32x^{2}}{3025}+x=100-200
Subtract 200 from both sides.
\frac{-32x^{2}}{3025}+x=-100
Subtract 200 from 100 to get -100.
-32x^{2}+3025x=-302500
Multiply both sides of the equation by 3025.
\frac{-32x^{2}+3025x}{-32}=-\frac{302500}{-32}
Divide both sides by -32.
x^{2}+\frac{3025}{-32}x=-\frac{302500}{-32}
Dividing by -32 undoes the multiplication by -32.
x^{2}-\frac{3025}{32}x=-\frac{302500}{-32}
Divide 3025 by -32.
x^{2}-\frac{3025}{32}x=\frac{75625}{8}
Reduce the fraction \frac{-302500}{-32} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3025}{32}x+\left(-\frac{3025}{64}\right)^{2}=\frac{75625}{8}+\left(-\frac{3025}{64}\right)^{2}
Divide -\frac{3025}{32}, the coefficient of the x term, by 2 to get -\frac{3025}{64}. Then add the square of -\frac{3025}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3025}{32}x+\frac{9150625}{4096}=\frac{75625}{8}+\frac{9150625}{4096}
Square -\frac{3025}{64} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3025}{32}x+\frac{9150625}{4096}=\frac{47870625}{4096}
Add \frac{75625}{8} to \frac{9150625}{4096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3025}{64}\right)^{2}=\frac{47870625}{4096}
Factor x^{2}-\frac{3025}{32}x+\frac{9150625}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3025}{64}\right)^{2}}=\sqrt{\frac{47870625}{4096}}
Take the square root of both sides of the equation.
x-\frac{3025}{64}=\frac{275\sqrt{633}}{64} x-\frac{3025}{64}=-\frac{275\sqrt{633}}{64}
Simplify.
x=\frac{275\sqrt{633}+3025}{64} x=\frac{3025-275\sqrt{633}}{64}
Add \frac{3025}{64} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}