Evaluate
\frac{1004}{15}\approx 66.933333333
Factor
\frac{2 ^ {2} \cdot 251}{3 \cdot 5} = 66\frac{14}{15} = 66.93333333333334
Share
Copied to clipboard
-\frac{32}{5}-8+\frac{136}{3}+36
Fraction \frac{-32}{5} can be rewritten as -\frac{32}{5} by extracting the negative sign.
-\frac{32}{5}-\frac{40}{5}+\frac{136}{3}+36
Convert 8 to fraction \frac{40}{5}.
\frac{-32-40}{5}+\frac{136}{3}+36
Since -\frac{32}{5} and \frac{40}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{72}{5}+\frac{136}{3}+36
Subtract 40 from -32 to get -72.
-\frac{216}{15}+\frac{680}{15}+36
Least common multiple of 5 and 3 is 15. Convert -\frac{72}{5} and \frac{136}{3} to fractions with denominator 15.
\frac{-216+680}{15}+36
Since -\frac{216}{15} and \frac{680}{15} have the same denominator, add them by adding their numerators.
\frac{464}{15}+36
Add -216 and 680 to get 464.
\frac{464}{15}+\frac{540}{15}
Convert 36 to fraction \frac{540}{15}.
\frac{464+540}{15}
Since \frac{464}{15} and \frac{540}{15} have the same denominator, add them by adding their numerators.
\frac{1004}{15}
Add 464 and 540 to get 1004.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}