Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3+5i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2-i.
\frac{\left(-3+5i\right)\left(-2-i\right)}{\left(-2\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3+5i\right)\left(-2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)i^{2}}{5}
Multiply complex numbers -3+5i and -2-i like you multiply binomials.
\frac{-3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{6+3i-10i+5}{5}
Do the multiplications in -3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)\left(-1\right).
\frac{6+5+\left(3-10\right)i}{5}
Combine the real and imaginary parts in 6+3i-10i+5.
\frac{11-7i}{5}
Do the additions in 6+5+\left(3-10\right)i.
\frac{11}{5}-\frac{7}{5}i
Divide 11-7i by 5 to get \frac{11}{5}-\frac{7}{5}i.
Re(\frac{\left(-3+5i\right)\left(-2-i\right)}{\left(-2+i\right)\left(-2-i\right)})
Multiply both numerator and denominator of \frac{-3+5i}{-2+i} by the complex conjugate of the denominator, -2-i.
Re(\frac{\left(-3+5i\right)\left(-2-i\right)}{\left(-2\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3+5i\right)\left(-2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)i^{2}}{5})
Multiply complex numbers -3+5i and -2-i like you multiply binomials.
Re(\frac{-3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{6+3i-10i+5}{5})
Do the multiplications in -3\left(-2\right)-3\left(-i\right)+5i\left(-2\right)+5\left(-1\right)\left(-1\right).
Re(\frac{6+5+\left(3-10\right)i}{5})
Combine the real and imaginary parts in 6+3i-10i+5.
Re(\frac{11-7i}{5})
Do the additions in 6+5+\left(3-10\right)i.
Re(\frac{11}{5}-\frac{7}{5}i)
Divide 11-7i by 5 to get \frac{11}{5}-\frac{7}{5}i.
\frac{11}{5}
The real part of \frac{11}{5}-\frac{7}{5}i is \frac{11}{5}.