Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{-29-14\left(-\frac{1}{2}\right)}{-11}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{-29-\frac{14\left(-1\right)}{2}}{-11}
Express 14\left(-\frac{1}{2}\right) as a single fraction.
\frac{-29-\frac{-14}{2}}{-11}
Multiply 14 and -1 to get -14.
\frac{-29-\left(-7\right)}{-11}
Divide -14 by 2 to get -7.
\frac{-29+7}{-11}
The opposite of -7 is 7.
\frac{-22}{-11}
Add -29 and 7 to get -22.
2
Divide -22 by -11 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}