Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{\left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right)}
Rationalize the denominator of \frac{-2-\sqrt{3}}{4+3\sqrt{2}} by multiplying numerator and denominator by 4-3\sqrt{2}.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{4^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{16-\left(3\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{16-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{16-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{16-9\times 2}
The square of \sqrt{2} is 2.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{16-18}
Multiply 9 and 2 to get 18.
\frac{\left(-2-\sqrt{3}\right)\left(4-3\sqrt{2}\right)}{-2}
Subtract 18 from 16 to get -2.
\frac{-8+6\sqrt{2}-4\sqrt{3}+3\sqrt{3}\sqrt{2}}{-2}
Apply the distributive property by multiplying each term of -2-\sqrt{3} by each term of 4-3\sqrt{2}.
\frac{-8+6\sqrt{2}-4\sqrt{3}+3\sqrt{6}}{-2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{8-6\sqrt{2}+4\sqrt{3}-3\sqrt{6}}{2}
Multiply both numerator and denominator by -1.