Evaluate
-\frac{105}{8}=-13.125
Factor
-\frac{105}{8} = -13\frac{1}{8} = -13.125
Share
Copied to clipboard
\frac{-6}{\frac{1}{2}}+\frac{-2\times \frac{1}{4}}{\frac{1}{3}}-\frac{3\times \frac{1}{4}}{-2}
Multiply -2 and 3 to get -6.
-6\times 2+\frac{-2\times \frac{1}{4}}{\frac{1}{3}}-\frac{3\times \frac{1}{4}}{-2}
Divide -6 by \frac{1}{2} by multiplying -6 by the reciprocal of \frac{1}{2}.
-12+\frac{-2\times \frac{1}{4}}{\frac{1}{3}}-\frac{3\times \frac{1}{4}}{-2}
Multiply -6 and 2 to get -12.
-12+\frac{\frac{-2}{4}}{\frac{1}{3}}-\frac{3\times \frac{1}{4}}{-2}
Multiply -2 and \frac{1}{4} to get \frac{-2}{4}.
-12+\frac{-\frac{1}{2}}{\frac{1}{3}}-\frac{3\times \frac{1}{4}}{-2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
-12-\frac{1}{2}\times 3-\frac{3\times \frac{1}{4}}{-2}
Divide -\frac{1}{2} by \frac{1}{3} by multiplying -\frac{1}{2} by the reciprocal of \frac{1}{3}.
-12+\frac{-3}{2}-\frac{3\times \frac{1}{4}}{-2}
Express -\frac{1}{2}\times 3 as a single fraction.
-12-\frac{3}{2}-\frac{3\times \frac{1}{4}}{-2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-\frac{24}{2}-\frac{3}{2}-\frac{3\times \frac{1}{4}}{-2}
Convert -12 to fraction -\frac{24}{2}.
\frac{-24-3}{2}-\frac{3\times \frac{1}{4}}{-2}
Since -\frac{24}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{27}{2}-\frac{3\times \frac{1}{4}}{-2}
Subtract 3 from -24 to get -27.
-\frac{27}{2}-\frac{\frac{3}{4}}{-2}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
-\frac{27}{2}-\frac{3}{4\left(-2\right)}
Express \frac{\frac{3}{4}}{-2} as a single fraction.
-\frac{27}{2}-\frac{3}{-8}
Multiply 4 and -2 to get -8.
-\frac{27}{2}-\left(-\frac{3}{8}\right)
Fraction \frac{3}{-8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
-\frac{27}{2}+\frac{3}{8}
The opposite of -\frac{3}{8} is \frac{3}{8}.
-\frac{108}{8}+\frac{3}{8}
Least common multiple of 2 and 8 is 8. Convert -\frac{27}{2} and \frac{3}{8} to fractions with denominator 8.
\frac{-108+3}{8}
Since -\frac{108}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
-\frac{105}{8}
Add -108 and 3 to get -105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}