Evaluate
\frac{-4x-14}{3}
Expand
\frac{-4x-14}{3}
Graph
Share
Copied to clipboard
-\frac{2}{3}\times 2\left(x-\left(-2\right)\right)-2
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{-2\times 2}{3}\left(x-\left(-2\right)\right)-2
Express -\frac{2}{3}\times 2 as a single fraction.
\frac{-4}{3}\left(x-\left(-2\right)\right)-2
Multiply -2 and 2 to get -4.
-\frac{4}{3}\left(x-\left(-2\right)\right)-2
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}\left(x+2\right)-2
The opposite of -2 is 2.
-\frac{4}{3}x-\frac{4}{3}\times 2-2
Use the distributive property to multiply -\frac{4}{3} by x+2.
-\frac{4}{3}x+\frac{-4\times 2}{3}-2
Express -\frac{4}{3}\times 2 as a single fraction.
-\frac{4}{3}x+\frac{-8}{3}-2
Multiply -4 and 2 to get -8.
-\frac{4}{3}x-\frac{8}{3}-2
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{4}{3}x-\frac{8}{3}-\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{4}{3}x+\frac{-8-6}{3}
Since -\frac{8}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}x-\frac{14}{3}
Subtract 6 from -8 to get -14.
-\frac{2}{3}\times 2\left(x-\left(-2\right)\right)-2
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{-2\times 2}{3}\left(x-\left(-2\right)\right)-2
Express -\frac{2}{3}\times 2 as a single fraction.
\frac{-4}{3}\left(x-\left(-2\right)\right)-2
Multiply -2 and 2 to get -4.
-\frac{4}{3}\left(x-\left(-2\right)\right)-2
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}\left(x+2\right)-2
The opposite of -2 is 2.
-\frac{4}{3}x-\frac{4}{3}\times 2-2
Use the distributive property to multiply -\frac{4}{3} by x+2.
-\frac{4}{3}x+\frac{-4\times 2}{3}-2
Express -\frac{4}{3}\times 2 as a single fraction.
-\frac{4}{3}x+\frac{-8}{3}-2
Multiply -4 and 2 to get -8.
-\frac{4}{3}x-\frac{8}{3}-2
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{4}{3}x-\frac{8}{3}-\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{4}{3}x+\frac{-8-6}{3}
Since -\frac{8}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}x-\frac{14}{3}
Subtract 6 from -8 to get -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}