Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{1250}x^{2}+\frac{7}{10}x=50
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{1}{1250}x^{2}+\frac{7}{10}x-50=50-50
Subtract 50 from both sides of the equation.
-\frac{1}{1250}x^{2}+\frac{7}{10}x-50=0
Subtracting 50 from itself leaves 0.
x=\frac{-\frac{7}{10}±\sqrt{\left(\frac{7}{10}\right)^{2}-4\left(-\frac{1}{1250}\right)\left(-50\right)}}{2\left(-\frac{1}{1250}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{1250} for a, \frac{7}{10} for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{10}±\sqrt{\frac{49}{100}-4\left(-\frac{1}{1250}\right)\left(-50\right)}}{2\left(-\frac{1}{1250}\right)}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{10}±\sqrt{\frac{49}{100}+\frac{2}{625}\left(-50\right)}}{2\left(-\frac{1}{1250}\right)}
Multiply -4 times -\frac{1}{1250}.
x=\frac{-\frac{7}{10}±\sqrt{\frac{49}{100}-\frac{4}{25}}}{2\left(-\frac{1}{1250}\right)}
Multiply \frac{2}{625} times -50.
x=\frac{-\frac{7}{10}±\sqrt{\frac{33}{100}}}{2\left(-\frac{1}{1250}\right)}
Add \frac{49}{100} to -\frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{7}{10}±\frac{\sqrt{33}}{10}}{2\left(-\frac{1}{1250}\right)}
Take the square root of \frac{33}{100}.
x=\frac{-\frac{7}{10}±\frac{\sqrt{33}}{10}}{-\frac{1}{625}}
Multiply 2 times -\frac{1}{1250}.
x=\frac{\sqrt{33}-7}{-\frac{1}{625}\times 10}
Now solve the equation x=\frac{-\frac{7}{10}±\frac{\sqrt{33}}{10}}{-\frac{1}{625}} when ± is plus. Add -\frac{7}{10} to \frac{\sqrt{33}}{10}.
x=\frac{875-125\sqrt{33}}{2}
Divide \frac{-7+\sqrt{33}}{10} by -\frac{1}{625} by multiplying \frac{-7+\sqrt{33}}{10} by the reciprocal of -\frac{1}{625}.
x=\frac{-\sqrt{33}-7}{-\frac{1}{625}\times 10}
Now solve the equation x=\frac{-\frac{7}{10}±\frac{\sqrt{33}}{10}}{-\frac{1}{625}} when ± is minus. Subtract \frac{\sqrt{33}}{10} from -\frac{7}{10}.
x=\frac{125\sqrt{33}+875}{2}
Divide \frac{-7-\sqrt{33}}{10} by -\frac{1}{625} by multiplying \frac{-7-\sqrt{33}}{10} by the reciprocal of -\frac{1}{625}.
x=\frac{875-125\sqrt{33}}{2} x=\frac{125\sqrt{33}+875}{2}
The equation is now solved.
-\frac{1}{1250}x^{2}+\frac{7}{10}x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{1250}x^{2}+\frac{7}{10}x}{-\frac{1}{1250}}=\frac{50}{-\frac{1}{1250}}
Multiply both sides by -1250.
x^{2}+\frac{\frac{7}{10}}{-\frac{1}{1250}}x=\frac{50}{-\frac{1}{1250}}
Dividing by -\frac{1}{1250} undoes the multiplication by -\frac{1}{1250}.
x^{2}-875x=\frac{50}{-\frac{1}{1250}}
Divide \frac{7}{10} by -\frac{1}{1250} by multiplying \frac{7}{10} by the reciprocal of -\frac{1}{1250}.
x^{2}-875x=-62500
Divide 50 by -\frac{1}{1250} by multiplying 50 by the reciprocal of -\frac{1}{1250}.
x^{2}-875x+\left(-\frac{875}{2}\right)^{2}=-62500+\left(-\frac{875}{2}\right)^{2}
Divide -875, the coefficient of the x term, by 2 to get -\frac{875}{2}. Then add the square of -\frac{875}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-875x+\frac{765625}{4}=-62500+\frac{765625}{4}
Square -\frac{875}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-875x+\frac{765625}{4}=\frac{515625}{4}
Add -62500 to \frac{765625}{4}.
\left(x-\frac{875}{2}\right)^{2}=\frac{515625}{4}
Factor x^{2}-875x+\frac{765625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{875}{2}\right)^{2}}=\sqrt{\frac{515625}{4}}
Take the square root of both sides of the equation.
x-\frac{875}{2}=\frac{125\sqrt{33}}{2} x-\frac{875}{2}=-\frac{125\sqrt{33}}{2}
Simplify.
x=\frac{125\sqrt{33}+875}{2} x=\frac{875-125\sqrt{33}}{2}
Add \frac{875}{2} to both sides of the equation.