Evaluate
-\frac{171}{26}\approx -6.576923077
Factor
-\frac{171}{26} = -6\frac{15}{26} = -6.576923076923077
Share
Copied to clipboard
\frac{-2}{\frac{4}{6}-\frac{15}{6}-\frac{1}{3}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{5}{2} to fractions with denominator 6.
\frac{-2}{\frac{4-15}{6}-\frac{1}{3}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Since \frac{4}{6} and \frac{15}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-2}{-\frac{11}{6}-\frac{1}{3}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Subtract 15 from 4 to get -11.
\frac{-2}{-\frac{11}{6}-\frac{2}{6}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Least common multiple of 6 and 3 is 6. Convert -\frac{11}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{-2}{\frac{-11-2}{6}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Since -\frac{11}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-2}{-\frac{13}{6}}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Subtract 2 from -11 to get -13.
-2\left(-\frac{6}{13}\right)-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Divide -2 by -\frac{13}{6} by multiplying -2 by the reciprocal of -\frac{13}{6}.
\frac{-2\left(-6\right)}{13}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Express -2\left(-\frac{6}{13}\right) as a single fraction.
\frac{12}{13}-\frac{\frac{1}{2}\times \frac{3}{2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Multiply -2 and -6 to get 12.
\frac{12}{13}-\frac{\frac{1\times 3}{2\times 2}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{13}-\frac{\frac{3}{4}\left(-3+\frac{4}{3}\right)}{-\frac{1}{6}}
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{12}{13}-\frac{\frac{3}{4}\left(-\frac{9}{3}+\frac{4}{3}\right)}{-\frac{1}{6}}
Convert -3 to fraction -\frac{9}{3}.
\frac{12}{13}-\frac{\frac{3}{4}\times \frac{-9+4}{3}}{-\frac{1}{6}}
Since -\frac{9}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{12}{13}-\frac{\frac{3}{4}\left(-\frac{5}{3}\right)}{-\frac{1}{6}}
Add -9 and 4 to get -5.
\frac{12}{13}-\frac{\frac{3\left(-5\right)}{4\times 3}}{-\frac{1}{6}}
Multiply \frac{3}{4} times -\frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{13}-\frac{\frac{-5}{4}}{-\frac{1}{6}}
Cancel out 3 in both numerator and denominator.
\frac{12}{13}-\frac{-\frac{5}{4}}{-\frac{1}{6}}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{12}{13}-\left(-\frac{5}{4}\left(-6\right)\right)
Divide -\frac{5}{4} by -\frac{1}{6} by multiplying -\frac{5}{4} by the reciprocal of -\frac{1}{6}.
\frac{12}{13}-\frac{-5\left(-6\right)}{4}
Express -\frac{5}{4}\left(-6\right) as a single fraction.
\frac{12}{13}-\frac{30}{4}
Multiply -5 and -6 to get 30.
\frac{12}{13}-\frac{15}{2}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\frac{24}{26}-\frac{195}{26}
Least common multiple of 13 and 2 is 26. Convert \frac{12}{13} and \frac{15}{2} to fractions with denominator 26.
\frac{24-195}{26}
Since \frac{24}{26} and \frac{195}{26} have the same denominator, subtract them by subtracting their numerators.
-\frac{171}{26}
Subtract 195 from 24 to get -171.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}