Evaluate
\frac{4401}{1991}\approx 2.210447012
Factor
\frac{3 ^ {3} \cdot 163}{11 \cdot 181} = 2\frac{419}{1991} = 2.210447011551984
Share
Copied to clipboard
\frac{-163+\frac{13\times 2608}{181}}{11}
Express 13\times \frac{2608}{181} as a single fraction.
\frac{-163+\frac{33904}{181}}{11}
Multiply 13 and 2608 to get 33904.
\frac{-\frac{29503}{181}+\frac{33904}{181}}{11}
Convert -163 to fraction -\frac{29503}{181}.
\frac{\frac{-29503+33904}{181}}{11}
Since -\frac{29503}{181} and \frac{33904}{181} have the same denominator, add them by adding their numerators.
\frac{\frac{4401}{181}}{11}
Add -29503 and 33904 to get 4401.
\frac{4401}{181\times 11}
Express \frac{\frac{4401}{181}}{11} as a single fraction.
\frac{4401}{1991}
Multiply 181 and 11 to get 1991.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}