Verify
true
Share
Copied to clipboard
-\frac{11}{4}-\frac{22}{7}=-\frac{165}{28}
Fraction \frac{-11}{4} can be rewritten as -\frac{11}{4} by extracting the negative sign.
-\frac{77}{28}-\frac{88}{28}=-\frac{165}{28}
Least common multiple of 4 and 7 is 28. Convert -\frac{11}{4} and \frac{22}{7} to fractions with denominator 28.
\frac{-77-88}{28}=-\frac{165}{28}
Since -\frac{77}{28} and \frac{88}{28} have the same denominator, subtract them by subtracting their numerators.
-\frac{165}{28}=-\frac{165}{28}
Subtract 88 from -77 to get -165.
\text{true}
Compare -\frac{165}{28} and -\frac{165}{28}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}