Solve for b
b=2\left(\sqrt{3}-1\right)\approx 1.464101615
Share
Copied to clipboard
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\left(-\sqrt{3}\right)+b=1
Rationalize the denominator of \frac{-1+\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\left(-\sqrt{3}\right)+b=1
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\left(-\sqrt{3}\right)+b=1
Square 1. Square \sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}\left(-\sqrt{3}\right)+b=1
Subtract 3 from 1 to get -2.
\frac{-\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)\sqrt{3}}{-2}+b=1
Express \frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}\left(-\sqrt{3}\right) as a single fraction.
\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)\sqrt{3}}{-2}+b=1
Use the distributive property to multiply -1 by -1+\sqrt{3}.
\frac{\left(1-\sqrt{3}\right)^{2}\sqrt{3}}{-2}+b=1
Multiply 1-\sqrt{3} and 1-\sqrt{3} to get \left(1-\sqrt{3}\right)^{2}.
\frac{\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\sqrt{3}}{-2}+b=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{\left(1-2\sqrt{3}+3\right)\sqrt{3}}{-2}+b=1
The square of \sqrt{3} is 3.
\frac{\left(4-2\sqrt{3}\right)\sqrt{3}}{-2}+b=1
Add 1 and 3 to get 4.
\frac{4\sqrt{3}-2\left(\sqrt{3}\right)^{2}}{-2}+b=1
Use the distributive property to multiply 4-2\sqrt{3} by \sqrt{3}.
\frac{4\sqrt{3}-2\times 3}{-2}+b=1
The square of \sqrt{3} is 3.
\frac{4\sqrt{3}-6}{-2}+b=1
Multiply -2 and 3 to get -6.
-2\sqrt{3}+3+b=1
Divide each term of 4\sqrt{3}-6 by -2 to get -2\sqrt{3}+3.
3+b=1+2\sqrt{3}
Add 2\sqrt{3} to both sides.
b=1+2\sqrt{3}-3
Subtract 3 from both sides.
b=-2+2\sqrt{3}
Subtract 3 from 1 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}