Evaluate
-\frac{1}{2}+i=-0.5+i
Real Part
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{\left(8-3i\right)\left(8+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+3i.
\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{8^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{73}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3i^{2}}{73}
Multiply complex numbers -1+\frac{19}{2}i and 8+3i like you multiply binomials.
\frac{-8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3\left(-1\right)}{73}
By definition, i^{2} is -1.
\frac{-8-3i+76i-\frac{57}{2}}{73}
Do the multiplications in -8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3\left(-1\right).
\frac{-8-\frac{57}{2}+\left(-3+76\right)i}{73}
Combine the real and imaginary parts in -8-3i+76i-\frac{57}{2}.
\frac{-\frac{73}{2}+73i}{73}
Do the additions in -8-\frac{57}{2}+\left(-3+76\right)i.
-\frac{1}{2}+i
Divide -\frac{73}{2}+73i by 73 to get -\frac{1}{2}+i.
Re(\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{\left(8-3i\right)\left(8+3i\right)})
Multiply both numerator and denominator of \frac{-1+\frac{19}{2}i}{8-3i} by the complex conjugate of the denominator, 8+3i.
Re(\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{8^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1+\frac{19}{2}i\right)\left(8+3i\right)}{73})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3i^{2}}{73})
Multiply complex numbers -1+\frac{19}{2}i and 8+3i like you multiply binomials.
Re(\frac{-8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3\left(-1\right)}{73})
By definition, i^{2} is -1.
Re(\frac{-8-3i+76i-\frac{57}{2}}{73})
Do the multiplications in -8-3i+\frac{19}{2}i\times 8+\frac{19}{2}\times 3\left(-1\right).
Re(\frac{-8-\frac{57}{2}+\left(-3+76\right)i}{73})
Combine the real and imaginary parts in -8-3i+76i-\frac{57}{2}.
Re(\frac{-\frac{73}{2}+73i}{73})
Do the additions in -8-\frac{57}{2}+\left(-3+76\right)i.
Re(-\frac{1}{2}+i)
Divide -\frac{73}{2}+73i by 73 to get -\frac{1}{2}+i.
-\frac{1}{2}
The real part of -\frac{1}{2}+i is -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}