Evaluate
-\frac{232}{3}\approx -77.333333333
Factor
-\frac{232}{3} = -77\frac{1}{3} = -77.33333333333333
Share
Copied to clipboard
-\frac{1}{3}+\frac{7\times 1}{2}-10+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
-\frac{1}{3}+\frac{7}{2}-10+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Multiply 7 and 1 to get 7.
-\frac{2}{6}+\frac{21}{6}-10+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Least common multiple of 3 and 2 is 6. Convert -\frac{1}{3} and \frac{7}{2} to fractions with denominator 6.
\frac{-2+21}{6}-10+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Since -\frac{2}{6} and \frac{21}{6} have the same denominator, add them by adding their numerators.
\frac{19}{6}-10+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Add -2 and 21 to get 19.
\frac{19}{6}-\frac{60}{6}+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Convert 10 to fraction \frac{60}{6}.
\frac{19-60}{6}+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Since \frac{19}{6} and \frac{60}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{41}{6}+\frac{\left(-3\right)^{3}}{3}-\frac{7\times 3^{2}}{2}-30
Subtract 60 from 19 to get -41.
-\frac{41}{6}+\frac{-27}{3}-\frac{7\times 3^{2}}{2}-30
Calculate -3 to the power of 3 and get -27.
-\frac{41}{6}-9-\frac{7\times 3^{2}}{2}-30
Divide -27 by 3 to get -9.
-\frac{41}{6}-\frac{54}{6}-\frac{7\times 3^{2}}{2}-30
Convert 9 to fraction \frac{54}{6}.
\frac{-41-54}{6}-\frac{7\times 3^{2}}{2}-30
Since -\frac{41}{6} and \frac{54}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{95}{6}-\frac{7\times 3^{2}}{2}-30
Subtract 54 from -41 to get -95.
-\frac{95}{6}-\frac{7\times 9}{2}-30
Calculate 3 to the power of 2 and get 9.
-\frac{95}{6}-\frac{63}{2}-30
Multiply 7 and 9 to get 63.
-\frac{95}{6}-\frac{189}{6}-30
Least common multiple of 6 and 2 is 6. Convert -\frac{95}{6} and \frac{63}{2} to fractions with denominator 6.
\frac{-95-189}{6}-30
Since -\frac{95}{6} and \frac{189}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-284}{6}-30
Subtract 189 from -95 to get -284.
-\frac{142}{3}-30
Reduce the fraction \frac{-284}{6} to lowest terms by extracting and canceling out 2.
-\frac{142}{3}-\frac{90}{3}
Convert 30 to fraction \frac{90}{3}.
\frac{-142-90}{3}
Since -\frac{142}{3} and \frac{90}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{232}{3}
Subtract 90 from -142 to get -232.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}