Evaluate
4\times \left(\frac{x}{1-x^{2}}\right)^{2}
Expand
4\times \left(\frac{x}{x^{2}-1}\right)^{2}
Graph
Share
Copied to clipboard
\frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and \left(1-x\right)^{2} is \left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{-1}{1-x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}. Multiply \frac{1}{\left(1-x\right)^{2}} times \frac{-x+1}{-x+1}.
\frac{-\left(-x+1\right)^{2}-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x-1-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in -\left(-x+1\right)^{2}-x+1.
\frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in -x^{2}+2x-1-x+1.
\frac{x\left(-x+1\right)}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Factor the expressions that are not already factored in \frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{x}{\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-x+1\right)^{2} and 1+x is \left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x}{\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{-1}{1+x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{x\left(x+1\right)-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}} and \frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x^{2}+2x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in x\left(x+1\right)-\left(-x+1\right)^{2}.
\frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in x^{2}+x-x^{2}+2x-1.
\frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}+\frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)^{2} and \left(1+x\right)^{2} is \left(x-1\right)^{2}\left(x+1\right)^{2}. Multiply \frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(1+x\right)^{2}} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Since \frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} and \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+3x-x-1+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Do the multiplications in \left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}.
\frac{4x^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Combine like terms in 3x^{2}+3x-x-1+x^{2}-2x+1.
\frac{4x^{2}}{x^{4}-2x^{2}+1}
Expand \left(x-1\right)^{2}\left(x+1\right)^{2}.
\frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and \left(1-x\right)^{2} is \left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{-1}{1-x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}. Multiply \frac{1}{\left(1-x\right)^{2}} times \frac{-x+1}{-x+1}.
\frac{-\left(-x+1\right)^{2}-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x-1-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in -\left(-x+1\right)^{2}-x+1.
\frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in -x^{2}+2x-1-x+1.
\frac{x\left(-x+1\right)}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Factor the expressions that are not already factored in \frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{x}{\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-x+1\right)^{2} and 1+x is \left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x}{\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{-1}{1+x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{x\left(x+1\right)-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}} and \frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x^{2}+2x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in x\left(x+1\right)-\left(-x+1\right)^{2}.
\frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in x^{2}+x-x^{2}+2x-1.
\frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}+\frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)^{2} and \left(1+x\right)^{2} is \left(x-1\right)^{2}\left(x+1\right)^{2}. Multiply \frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(1+x\right)^{2}} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Since \frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} and \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+3x-x-1+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Do the multiplications in \left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}.
\frac{4x^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Combine like terms in 3x^{2}+3x-x-1+x^{2}-2x+1.
\frac{4x^{2}}{x^{4}-2x^{2}+1}
Expand \left(x-1\right)^{2}\left(x+1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}