Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and \left(1-x\right)^{2} is \left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{-1}{1-x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}. Multiply \frac{1}{\left(1-x\right)^{2}} times \frac{-x+1}{-x+1}.
\frac{-\left(-x+1\right)^{2}-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x-1-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in -\left(-x+1\right)^{2}-x+1.
\frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in -x^{2}+2x-1-x+1.
\frac{x\left(-x+1\right)}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Factor the expressions that are not already factored in \frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{x}{\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-x+1\right)^{2} and 1+x is \left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x}{\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{-1}{1+x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{x\left(x+1\right)-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}} and \frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x^{2}+2x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in x\left(x+1\right)-\left(-x+1\right)^{2}.
\frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in x^{2}+x-x^{2}+2x-1.
\frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}+\frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)^{2} and \left(1+x\right)^{2} is \left(x-1\right)^{2}\left(x+1\right)^{2}. Multiply \frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(1+x\right)^{2}} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Since \frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} and \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+3x-x-1+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Do the multiplications in \left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}.
\frac{4x^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Combine like terms in 3x^{2}+3x-x-1+x^{2}-2x+1.
\frac{4x^{2}}{x^{4}-2x^{2}+1}
Expand \left(x-1\right)^{2}\left(x+1\right)^{2}.
\frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and \left(1-x\right)^{2} is \left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{-1}{1-x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}. Multiply \frac{1}{\left(1-x\right)^{2}} times \frac{-x+1}{-x+1}.
\frac{-\left(-x+1\right)^{2}-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{-\left(-x+1\right)^{2}}{\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x-1-x+1}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in -\left(-x+1\right)^{2}-x+1.
\frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in -x^{2}+2x-1-x+1.
\frac{x\left(-x+1\right)}{\left(-x+1\right)\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Factor the expressions that are not already factored in \frac{-x^{2}+x}{\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{x}{\left(-x+1\right)^{2}}+\frac{-1}{1+x}+\frac{1}{\left(1+x\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-x+1\right)^{2} and 1+x is \left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x}{\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{-1}{1+x} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{x\left(x+1\right)-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Since \frac{x\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)^{2}} and \frac{-\left(-x+1\right)^{2}}{\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x^{2}+2x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Do the multiplications in x\left(x+1\right)-\left(-x+1\right)^{2}.
\frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}}+\frac{1}{\left(1+x\right)^{2}}
Combine like terms in x^{2}+x-x^{2}+2x-1.
\frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}}+\frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)^{2} and \left(1+x\right)^{2} is \left(x-1\right)^{2}\left(x+1\right)^{2}. Multiply \frac{3x-1}{\left(x+1\right)\left(-x+1\right)^{2}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(1+x\right)^{2}} times \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}}.
\frac{\left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Since \frac{\left(3x-1\right)\left(x+1\right)}{\left(x-1\right)^{2}\left(x+1\right)^{2}} and \frac{\left(x-1\right)^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+3x-x-1+x^{2}-2x+1}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Do the multiplications in \left(3x-1\right)\left(x+1\right)+\left(x-1\right)^{2}.
\frac{4x^{2}}{\left(x-1\right)^{2}\left(x+1\right)^{2}}
Combine like terms in 3x^{2}+3x-x-1+x^{2}-2x+1.
\frac{4x^{2}}{x^{4}-2x^{2}+1}
Expand \left(x-1\right)^{2}\left(x+1\right)^{2}.