Evaluate
\frac{\left(1-x\right)\left(x-5\right)}{2}
Factor
\frac{\left(1-x\right)\left(x-5\right)}{2}
Graph
Share
Copied to clipboard
\frac{-x^{2}-5}{2}+3x
Since \frac{-x^{2}}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}-5}{2}+\frac{2\times 3x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\frac{-x^{2}-5+2\times 3x}{2}
Since \frac{-x^{2}-5}{2} and \frac{2\times 3x}{2} have the same denominator, add them by adding their numerators.
\frac{-x^{2}-5+6x}{2}
Do the multiplications in -x^{2}-5+2\times 3x.
\frac{-x^{2}+6x-5}{2}
Factor out \frac{1}{2}.
a+b=6 ab=-\left(-5\right)=5
Consider -x^{2}+6x-5. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
a=5 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+5x\right)+\left(x-5\right)
Rewrite -x^{2}+6x-5 as \left(-x^{2}+5x\right)+\left(x-5\right).
-x\left(x-5\right)+x-5
Factor out -x in -x^{2}+5x.
\left(x-5\right)\left(-x+1\right)
Factor out common term x-5 by using distributive property.
\frac{\left(x-5\right)\left(-x+1\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}