Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-t^{2}+4t-280=0
Variable t cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by t\left(t-4\right).
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
Square 4.
t=\frac{-4±\sqrt{16+4\left(-280\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-4±\sqrt{16-1120}}{2\left(-1\right)}
Multiply 4 times -280.
t=\frac{-4±\sqrt{-1104}}{2\left(-1\right)}
Add 16 to -1120.
t=\frac{-4±4\sqrt{69}i}{2\left(-1\right)}
Take the square root of -1104.
t=\frac{-4±4\sqrt{69}i}{-2}
Multiply 2 times -1.
t=\frac{-4+4\sqrt{69}i}{-2}
Now solve the equation t=\frac{-4±4\sqrt{69}i}{-2} when ± is plus. Add -4 to 4i\sqrt{69}.
t=-2\sqrt{69}i+2
Divide -4+4i\sqrt{69} by -2.
t=\frac{-4\sqrt{69}i-4}{-2}
Now solve the equation t=\frac{-4±4\sqrt{69}i}{-2} when ± is minus. Subtract 4i\sqrt{69} from -4.
t=2+2\sqrt{69}i
Divide -4-4i\sqrt{69} by -2.
t=-2\sqrt{69}i+2 t=2+2\sqrt{69}i
The equation is now solved.
-t^{2}+4t-280=0
Variable t cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by t\left(t-4\right).
-t^{2}+4t=280
Add 280 to both sides. Anything plus zero gives itself.
\frac{-t^{2}+4t}{-1}=\frac{280}{-1}
Divide both sides by -1.
t^{2}+\frac{4}{-1}t=\frac{280}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-4t=\frac{280}{-1}
Divide 4 by -1.
t^{2}-4t=-280
Divide 280 by -1.
t^{2}-4t+\left(-2\right)^{2}=-280+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=-280+4
Square -2.
t^{2}-4t+4=-276
Add -280 to 4.
\left(t-2\right)^{2}=-276
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{-276}
Take the square root of both sides of the equation.
t-2=2\sqrt{69}i t-2=-2\sqrt{69}i
Simplify.
t=2+2\sqrt{69}i t=-2\sqrt{69}i+2
Add 2 to both sides of the equation.