Evaluate
\frac{45}{2}=22.5
Factor
\frac{3 ^ {2} \cdot 5}{2} = 22\frac{1}{2} = 22.5
Share
Copied to clipboard
\frac{-16+\frac{5}{\frac{10}{5}}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Calculate 4 to the power of 2 and get 16.
\frac{-16+\frac{5\times 5}{10}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Divide 5 by \frac{10}{5} by multiplying 5 by the reciprocal of \frac{10}{5}.
\frac{-16+\frac{25}{10}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Multiply 5 and 5 to get 25.
\frac{-16+\frac{5}{2}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{32}{2}+\frac{5}{2}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Convert -16 to fraction -\frac{32}{2}.
\frac{\frac{-32+5}{2}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Since -\frac{32}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{27}{2}-3\left(-1\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Add -32 and 5 to get -27.
\frac{-\frac{27}{2}-\left(-3\right)}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Multiply 3 and -1 to get -3.
\frac{-\frac{27}{2}+3}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
The opposite of -3 is 3.
\frac{-\frac{27}{2}+\frac{6}{2}}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Convert 3 to fraction \frac{6}{2}.
\frac{\frac{-27+6}{2}}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Since -\frac{27}{2} and \frac{6}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{21}{2}}{-\left(\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Add -27 and 6 to get -21.
\frac{-\frac{21}{2}}{-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{-\frac{21}{2}}{-\frac{1}{9}+\frac{1}{9}-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{-\frac{21}{2}}{-\frac{1^{2}}{3}}-\left(-3\right)^{2}
Add -\frac{1}{9} and \frac{1}{9} to get 0.
\frac{-\frac{21}{2}}{-\frac{1}{3}}-\left(-3\right)^{2}
Calculate 1 to the power of 2 and get 1.
-\frac{21}{2}\left(-3\right)-\left(-3\right)^{2}
Divide -\frac{21}{2} by -\frac{1}{3} by multiplying -\frac{21}{2} by the reciprocal of -\frac{1}{3}.
\frac{-21\left(-3\right)}{2}-\left(-3\right)^{2}
Express -\frac{21}{2}\left(-3\right) as a single fraction.
\frac{63}{2}-\left(-3\right)^{2}
Multiply -21 and -3 to get 63.
\frac{63}{2}-9
Calculate -3 to the power of 2 and get 9.
\frac{63}{2}-\frac{18}{2}
Convert 9 to fraction \frac{18}{2}.
\frac{63-18}{2}
Since \frac{63}{2} and \frac{18}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{45}{2}
Subtract 18 from 63 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}