Evaluate
\frac{721}{120}\approx 6.008333333
Factor
\frac{7 \cdot 103}{2 ^ {3} \cdot 3 \cdot 5} = 6\frac{1}{120} = 6.008333333333334
Share
Copied to clipboard
\frac{-1}{5}-\frac{-1^{4}}{4}-\frac{8^{-1}}{3}+6
Calculate 1 to the power of 5 and get 1.
-\frac{1}{5}-\frac{-1^{4}}{4}-\frac{8^{-1}}{3}+6
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
-\frac{1}{5}-\frac{-1}{4}-\frac{8^{-1}}{3}+6
Calculate 1 to the power of 4 and get 1.
-\frac{1}{5}-\left(-\frac{1}{4}\right)-\frac{8^{-1}}{3}+6
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{1}{5}+\frac{1}{4}-\frac{8^{-1}}{3}+6
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{1}{20}-\frac{8^{-1}}{3}+6
Add -\frac{1}{5} and \frac{1}{4} to get \frac{1}{20}.
\frac{1}{20}-\frac{\frac{1}{8}}{3}+6
Calculate 8 to the power of -1 and get \frac{1}{8}.
\frac{1}{20}-\frac{1}{8\times 3}+6
Express \frac{\frac{1}{8}}{3} as a single fraction.
\frac{1}{20}-\frac{1}{24}+6
Multiply 8 and 3 to get 24.
\frac{1}{120}+6
Subtract \frac{1}{24} from \frac{1}{20} to get \frac{1}{120}.
\frac{721}{120}
Add \frac{1}{120} and 6 to get \frac{721}{120}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}