Verify
false
Share
Copied to clipboard
2\left(-\frac{7}{10}\right)-35=60-14-4\left(2-\frac{17}{10}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,4,5.
\frac{2\left(-7\right)}{10}-35=60-14-4\left(2-\frac{17}{10}\right)
Express 2\left(-\frac{7}{10}\right) as a single fraction.
\frac{-14}{10}-35=60-14-4\left(2-\frac{17}{10}\right)
Multiply 2 and -7 to get -14.
-\frac{7}{5}-35=60-14-4\left(2-\frac{17}{10}\right)
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
-\frac{7}{5}-\frac{175}{5}=60-14-4\left(2-\frac{17}{10}\right)
Convert 35 to fraction \frac{175}{5}.
\frac{-7-175}{5}=60-14-4\left(2-\frac{17}{10}\right)
Since -\frac{7}{5} and \frac{175}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=60-14-4\left(2-\frac{17}{10}\right)
Subtract 175 from -7 to get -182.
-\frac{182}{5}=46-4\left(2-\frac{17}{10}\right)
Subtract 14 from 60 to get 46.
-\frac{182}{5}=46-4\left(\frac{20}{10}-\frac{17}{10}\right)
Convert 2 to fraction \frac{20}{10}.
-\frac{182}{5}=46-4\times \frac{20-17}{10}
Since \frac{20}{10} and \frac{17}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=46-4\times \frac{3}{10}
Subtract 17 from 20 to get 3.
-\frac{182}{5}=46+\frac{-4\times 3}{10}
Express -4\times \frac{3}{10} as a single fraction.
-\frac{182}{5}=46+\frac{-12}{10}
Multiply -4 and 3 to get -12.
-\frac{182}{5}=46-\frac{6}{5}
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{182}{5}=\frac{230}{5}-\frac{6}{5}
Convert 46 to fraction \frac{230}{5}.
-\frac{182}{5}=\frac{230-6}{5}
Since \frac{230}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=\frac{224}{5}
Subtract 6 from 230 to get 224.
\text{false}
Compare -\frac{182}{5} and \frac{224}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}