Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

2\left(-\frac{7}{10}\right)-35=60-14-4\left(2-\frac{17}{10}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,4,5.
\frac{2\left(-7\right)}{10}-35=60-14-4\left(2-\frac{17}{10}\right)
Express 2\left(-\frac{7}{10}\right) as a single fraction.
\frac{-14}{10}-35=60-14-4\left(2-\frac{17}{10}\right)
Multiply 2 and -7 to get -14.
-\frac{7}{5}-35=60-14-4\left(2-\frac{17}{10}\right)
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
-\frac{7}{5}-\frac{175}{5}=60-14-4\left(2-\frac{17}{10}\right)
Convert 35 to fraction \frac{175}{5}.
\frac{-7-175}{5}=60-14-4\left(2-\frac{17}{10}\right)
Since -\frac{7}{5} and \frac{175}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=60-14-4\left(2-\frac{17}{10}\right)
Subtract 175 from -7 to get -182.
-\frac{182}{5}=46-4\left(2-\frac{17}{10}\right)
Subtract 14 from 60 to get 46.
-\frac{182}{5}=46-4\left(\frac{20}{10}-\frac{17}{10}\right)
Convert 2 to fraction \frac{20}{10}.
-\frac{182}{5}=46-4\times \frac{20-17}{10}
Since \frac{20}{10} and \frac{17}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=46-4\times \frac{3}{10}
Subtract 17 from 20 to get 3.
-\frac{182}{5}=46+\frac{-4\times 3}{10}
Express -4\times \frac{3}{10} as a single fraction.
-\frac{182}{5}=46+\frac{-12}{10}
Multiply -4 and 3 to get -12.
-\frac{182}{5}=46-\frac{6}{5}
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{182}{5}=\frac{230}{5}-\frac{6}{5}
Convert 46 to fraction \frac{230}{5}.
-\frac{182}{5}=\frac{230-6}{5}
Since \frac{230}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{182}{5}=\frac{224}{5}
Subtract 6 from 230 to get 224.
\text{false}
Compare -\frac{182}{5} and \frac{224}{5}.