Evaluate
-\frac{5\sqrt{2}}{12}\approx -0.589255651
Share
Copied to clipboard
\frac{-\frac{3}{2}-\frac{2}{2}}{\sqrt{18}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{-3-2}{2}}{\sqrt{18}}
Since -\frac{3}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{2}}{\sqrt{18}}
Subtract 2 from -3 to get -5.
\frac{-\frac{5}{2}}{3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{-5}{2\times 3\sqrt{2}}
Express \frac{-\frac{5}{2}}{3\sqrt{2}} as a single fraction.
\frac{-5\sqrt{2}}{2\times 3\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-5}{2\times 3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-5\sqrt{2}}{2\times 3\times 2}
The square of \sqrt{2} is 2.
\frac{-5\sqrt{2}}{6\times 2}
Multiply 2 and 3 to get 6.
\frac{-5\sqrt{2}}{12}
Multiply 6 and 2 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}