Evaluate
-\frac{154}{9}\approx -17.111111111
Factor
-\frac{154}{9} = -17\frac{1}{9} = -17.11111111111111
Share
Copied to clipboard
\frac{\frac{-2\times 8}{5\times 3}}{\frac{2}{9}}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Multiply -\frac{2}{5} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-16}{15}}{\frac{2}{9}}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Do the multiplications in the fraction \frac{-2\times 8}{5\times 3}.
\frac{-\frac{16}{15}}{\frac{2}{9}}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Fraction \frac{-16}{15} can be rewritten as -\frac{16}{15} by extracting the negative sign.
-\frac{16}{15}\times \frac{9}{2}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Divide -\frac{16}{15} by \frac{2}{9} by multiplying -\frac{16}{15} by the reciprocal of \frac{2}{9}.
\frac{-16\times 9}{15\times 2}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Multiply -\frac{16}{15} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-144}{30}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Do the multiplications in the fraction \frac{-16\times 9}{15\times 2}.
-\frac{24}{5}+\frac{\frac{39}{5}-\frac{7}{8}}{\frac{-3}{8}\times \frac{27}{18}}
Reduce the fraction \frac{-144}{30} to lowest terms by extracting and canceling out 6.
-\frac{24}{5}+\frac{\frac{312}{40}-\frac{35}{40}}{\frac{-3}{8}\times \frac{27}{18}}
Least common multiple of 5 and 8 is 40. Convert \frac{39}{5} and \frac{7}{8} to fractions with denominator 40.
-\frac{24}{5}+\frac{\frac{312-35}{40}}{\frac{-3}{8}\times \frac{27}{18}}
Since \frac{312}{40} and \frac{35}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{24}{5}+\frac{\frac{277}{40}}{\frac{-3}{8}\times \frac{27}{18}}
Subtract 35 from 312 to get 277.
-\frac{24}{5}+\frac{\frac{277}{40}}{-\frac{3}{8}\times \frac{27}{18}}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
-\frac{24}{5}+\frac{\frac{277}{40}}{-\frac{3}{8}\times \frac{3}{2}}
Reduce the fraction \frac{27}{18} to lowest terms by extracting and canceling out 9.
-\frac{24}{5}+\frac{\frac{277}{40}}{\frac{-3\times 3}{8\times 2}}
Multiply -\frac{3}{8} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{24}{5}+\frac{\frac{277}{40}}{\frac{-9}{16}}
Do the multiplications in the fraction \frac{-3\times 3}{8\times 2}.
-\frac{24}{5}+\frac{\frac{277}{40}}{-\frac{9}{16}}
Fraction \frac{-9}{16} can be rewritten as -\frac{9}{16} by extracting the negative sign.
-\frac{24}{5}+\frac{277}{40}\left(-\frac{16}{9}\right)
Divide \frac{277}{40} by -\frac{9}{16} by multiplying \frac{277}{40} by the reciprocal of -\frac{9}{16}.
-\frac{24}{5}+\frac{277\left(-16\right)}{40\times 9}
Multiply \frac{277}{40} times -\frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
-\frac{24}{5}+\frac{-4432}{360}
Do the multiplications in the fraction \frac{277\left(-16\right)}{40\times 9}.
-\frac{24}{5}-\frac{554}{45}
Reduce the fraction \frac{-4432}{360} to lowest terms by extracting and canceling out 8.
-\frac{216}{45}-\frac{554}{45}
Least common multiple of 5 and 45 is 45. Convert -\frac{24}{5} and \frac{554}{45} to fractions with denominator 45.
\frac{-216-554}{45}
Since -\frac{216}{45} and \frac{554}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-770}{45}
Subtract 554 from -216 to get -770.
-\frac{154}{9}
Reduce the fraction \frac{-770}{45} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}