Evaluate
-\frac{11}{10}=-1.1
Factor
-\frac{11}{10} = -1\frac{1}{10} = -1.1
Share
Copied to clipboard
\frac{\frac{-1}{10\times 100}-\left(-\frac{1}{10}\right)^{2}}{\frac{1}{100}}
Multiply -\frac{1}{10} times \frac{1}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-1}{1000}-\left(-\frac{1}{10}\right)^{2}}{\frac{1}{100}}
Do the multiplications in the fraction \frac{-1}{10\times 100}.
\frac{-\frac{1}{1000}-\left(-\frac{1}{10}\right)^{2}}{\frac{1}{100}}
Fraction \frac{-1}{1000} can be rewritten as -\frac{1}{1000} by extracting the negative sign.
\frac{-\frac{1}{1000}-\frac{1}{100}}{\frac{1}{100}}
Calculate -\frac{1}{10} to the power of 2 and get \frac{1}{100}.
\frac{-\frac{1}{1000}-\frac{10}{1000}}{\frac{1}{100}}
Least common multiple of 1000 and 100 is 1000. Convert -\frac{1}{1000} and \frac{1}{100} to fractions with denominator 1000.
\frac{\frac{-1-10}{1000}}{\frac{1}{100}}
Since -\frac{1}{1000} and \frac{10}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{1000}}{\frac{1}{100}}
Subtract 10 from -1 to get -11.
-\frac{11}{1000}\times 100
Divide -\frac{11}{1000} by \frac{1}{100} by multiplying -\frac{11}{1000} by the reciprocal of \frac{1}{100}.
\frac{-11\times 100}{1000}
Express -\frac{11}{1000}\times 100 as a single fraction.
\frac{-1100}{1000}
Multiply -11 and 100 to get -1100.
-\frac{11}{10}
Reduce the fraction \frac{-1100}{1000} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}